CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Level

MARK SCHEME for the May/June 2014 series

9701 CHEMISTRY

9701/42

Paper 4 (Structured Questions), maximum raw mark 100

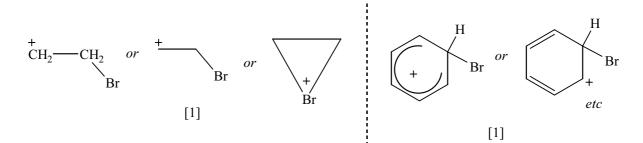
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

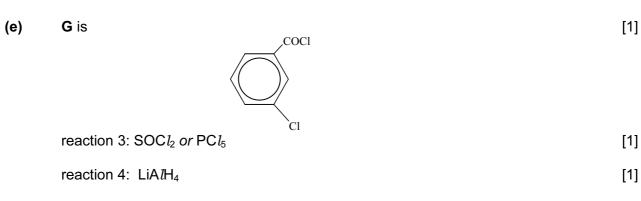
Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	www.	dynamicpapers	s.com
Page 2	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42
1 (a) (i) 4s $4 \downarrow$ $4 \downarrow$ $4 \downarrow$	4s -	$\frac{4}{4} \frac{4}{4} \frac{3}{4} \frac{3}{4} \frac{3}{2} \frac{3}{4} \frac{3}$	
Fe	, Fe ²⁺	ZII	
	Fe		[2]
	colour due to absorbance of visible light) lue to electron promoted (from lower) to upper orbital/er	nergy level	[1]
	n Zn ²⁺ there's no space in higher orbital for the electron t lled <u>d-</u> orbitals/shell	o go <i>or</i> completely	[1]
			4
(b) (i) y	rellow is due to [CuC4] ²⁻		[1]
r	eaction is ligand displacement/exchange		[1]
(ii) (solution goes blue) due to $[Cu(H_2O)_6]^{2+}$		[1]
	lue ppt. <i>or</i> (s) f Cu(OH) ₂ <i>or</i> [Cu(H ₂ O) ₄ (OH) ₂] etc.		[1] [1]
	purple <i>or</i> deep/dark blue solution <i>or</i> (aq) lue to [Cu(NH ₃) ₄] ²⁺ <i>or</i> [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺		[1] [1]
			7
(c) (i) 2	$KI + K_2S_2O_8 \longrightarrow 2K_2SO_4 + I_2 or$		
i	onic: $2I^- + S_2O_8^{2-} \longrightarrow 2SO_4^{2-} + I_2$		[1]
(ii)	Fe ²⁺ is a homogeneous catalyst		[1]
	equations: $2Fe^{2+} + S_2O_8^{2-} \longrightarrow 2Fe^{3+} + 2SO_4^{2-}$ $2Fe^{3+} + 2I^- \longrightarrow 2Fe^{2+} + I_2$		
	r verbal equivalent, e.g. reactants are both negative in ther $or \ Fe^{2+}$ can be oxidised by $S_2O_8^{2-}$ and Fe^{3+} can be reacted by $S_2O_8^{2-}$ and Fe^{3+} can be reacted by $S_2O_8^{2-}$ can be reacted by $S_2O_8^{2-}$ and Fe^{3+} can be reacted by $S_2O_8^{2-}$ can be reacted by $S_2O_8^{2-}$ can be reacted by $S_2O_8^{2-$		[1]
			3
			[Total: 14]


Page 3	3	Mark Scheme	dynamicpapers Syllabus	Paper
V		GCE A LEVEL – May/June 2014	9701	42
(a) A:	voltr	neter <i>or</i> V <i>or</i> potentiometer		[1]
B:	plati	num <i>or</i> Pt		[1]
C:	1 mc	dm^{-3} and H^{+} or HCl (or 0.5 M H_2SO_4)		[1]
D:	lead	(metal) <i>or</i> Pb		[1]
				4
(b) (i)	a co e.g. over	in the box next to -0.17 V mment that the $[Pb^{2^+}]$ has decreased plus a descripti as $[Pb^{2^+}]$ decreases (from 1 mol dm ⁻³), $Pb^{2^+}(aq) + 2$ to the left hand side, <i>or</i> as $[Pb^{2^+}]$ decreases, Pb^{2^+}	e⁻	
	redu	ced		[1]
(ii)	$(K_{sp}$	=) $[Pb^{2+}][Cl^{-}]^{2}$		[1]
(iii)	if [Pl so <i>K</i>	$C[l_2] = 3.5 \times 10^{-2}$, $[Pb^{2^+}] = 3.5 \times 10^{-2}$ and $[Cl^-] = 7.0 \times l_{sp} = (3.5 \times 10^{-2}) \times (7.0 \times 10^{-2})^2 = 1.715 (1.7) \times 10^{-4} \text{ mos}^2$	10 ⁻² I ³ dm ⁻⁹ (≥2sf)	[1] +[1]
				5
(c) (i)	the (M^{2+}/M) E^{e} for the two elements are very similar or are	–0.13 and –0.14 V	[1]
	<i>Е</i> ^ө (\$	Sn^{4+}/Sn^{2+}) = 0.15 V and E^{9} (Pb ⁴⁺ /Pb ²⁺) = 1.69 V		[1]
	so S not redu	en ²⁺ is quite easily oxidised (to Sn ⁴⁺) or is a stronger re easily oxidised (to Pb ⁴⁺) or Pb ⁴⁺ is a stronger oxidar ced	eductant or Pb ²⁺ is It or Pb ⁴⁺ is easily	[1]
(ii)	•	$PbCl_2 + Zn \longrightarrow Pb + ZnCl_2$ (<i>or</i> ionic) er acceptable reductants: Fe, Mg, Ca but not Na or K)		[1]
		+ $Br_2 \longrightarrow Sn^{4+} + 2Br^{-}$		[1]
	(othe	er acceptable oxidants: VO ²⁺ , Cr ₂ O ₇ ^{2–} , Ag ⁺ , C <i>l</i> ₂ , Br ₂ , F ₂	, Fe°, MnO ₄)	5
(d) (i)	Pb ²⁺	(g) + $2Cl^{-}(g) \longrightarrow PbCl_{2}(s)$		[1]
(ii)	-359 LE	$= \Delta H_{at} + E(Cl - Cl) + 1^{st} IE + 2^{nd} IE + 2 \times E_A(Cl) + LE$ $= 195 + 242 + 716 + 1450 - 2 \times 349 + LE$ $= 2 \times 349 - 359 - 195 - 242 - 716 - 1450$		
	LE =	= –2264 (kJ mol ^{−1})		[3]
(iii)	LE(F	PbCl ₂) > LE(PbBr ₂) <i>or</i> more exothermic <i>or</i> stronger latt	ice	[1]
	beca	ause $Cl^-/chloride$ anion has smaller radius/size than I	Br⁻/bromide	[1]
				6
				[Total: 20]

Pag	<u>je</u> 4	·	Mark Scheme	Syllabus	Paper
			GCE A LEVEL – May/June 2014	9701	42
(a)	(i)	B ar	nd D		[1] + [1
	(ii)	D			[1
					;
(b)	hea	it with	dilute H⁺(aq) <i>or</i> H₂SO₄(aq)		[1
(c)	(i)		rger than that for ethanol because ethanoate ion/ $CH_3CO_2^-$ is stabilised by charge deloca	alisation	
		the	O–H bond is weakened due to its proximity to C=O second electronegative/oxygen atom	/carbonyl group <i>or</i>	[1
		elec	maller than that for chloroethanoic acid because tron-withdrawing/electronegative chlorine (atom) mak le <i>or</i> O–H bond weaker <i>or</i> H more easily lost	the anion more	[1
	(ii)	[H⁺]	= $\sqrt{([CH_3CO_2H] \times K_a)} = \sqrt{(0.1 \times 1.75 \times 10^{-5})} = 1.32(3)$	× 10 ⁻³ (mol dm ⁻³)	[1
		pH =	= -log ₁₀ [H ⁺] = 2.88 (2.9)		[1
					4
(d)	(i)		aOH) at start = 0.1 × 20/1000 = 2.0 × 10 ⁻³ mol aOH) at finish = 1.0 × 10⁻³ mol		[1
	(ii)	so [l	is in 30 cm ³ of solution, NaOH] at finish = 1.0 × 10 ⁻³ /0.030 = 3.3(3) × 10⁻² mo (i)	ldm ⁻³ (≥2 s.f.) ecf	[1
(i	iii)		= $K_w/[OH^-]$ = 1 × 10 ⁻¹⁴ /3.33 × 10 ⁻² = 3.0 × 10 ⁻¹³ m = $-\log_{10}[H^+]$ = 12.5(2)	ol dm ⁻³	[1
			OH = −log ₁₀ (3.33 × 10 ⁻²) = 1.48 = pK _w – pOH = 14 – 1.48 = 12.5(2)		[1
(i	iv)	pH/	vol curve: start at pH 2.88 (2.9) ecf		[1
		verti	cal (over at least 2 pH units) portion at V = 10 cm^3		[1
		leve	is off at pH 12.5 \pm 0.3 ecf		[1
	(v)	indic	ator is thymolphthalein		[1
					7

[Total: 15]


		vw.dynamicpape	ers.com	
	Page 5	Mark Scheme	Syllabus	Paper
		GCE A LEVEL – May/June 2014	9701	42
4.	(a) (i) add AN	ition D		
	(ii) sub	stitution		[1]
				1
	(b) Br ₂ + A	$lBr_3 \longrightarrow Br^+ + AlBr_4^-$ (or can use $AlCl_3$ or Fe	Cl ₃ or FeBr ₃ etc.)	[1]
				1

(c) (i) The two intermediate cations:

(ii) The ring (of π electrons) in benzene is a stable configuration *or* is unchanged after the reaction. [1]

(d)	E is benzoic acid	[1]
	reaction 1: heat with KMnO ₄ (+ OH ⁻ or H ⁺)	[1]
	reaction 2: heat with $Cl_2 + AlCl_3$ or $FeCl_3$	[1]

3

3

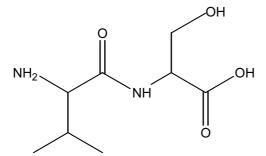
3

[Total: 11]

									WW	w.dyr	namicpap	ers.com	
	Pa	ige 6	5				Schen				Syllabus	Paper	
					GCE A	LEVEL	– May	/June 20)14		9701	42	
5.	(a)	(i)	Na r	eacts wi	th –OH c	or hydroxy	yl/alco	hol grou	ps			[[1]
		(ii)	Fehl	ing's sol	ution rea	icts with -	-CHO	or aldeh	yde groups			[[1]
													2
	(b)	alk	ene o	r C=C or	carbon	double bo	ond <i>or</i>	phenol	<i>or</i> phenylar	mine		[[1]
													1
	(c)		(CH ₃ CH ₂ (CH(OH)	СНО	Cł	l₃CH(O⊦	I)CH₂CHO		HOCH ₂	CH ₂ CH ₂ CHO	
					OH								
					СН	0	~		СНО		но	СН	ίΟ
								ÓН				[1] + [1] + [[1]
													3
	(d)	(i)		CH₃CH((nyl keton		up <i>or</i> the	CH₃C	O group	or methyl	secon	dary alcoho		[1]
		(ii)	CH ₃	CH(OH)	CH₂CHC)						[[1]
													2
	(e)	(i)	optic	al isome	erism							[[1]
		(ii)											
		(11)	H	,IIIOH C	НО		но	IH	СНО				
												[[1]
												-	2
													4

[Total: 10]

VANANA/ di	ynamicpapers.co	m
		лп


[3]

3

Page 7	Mark Scheme	Syllabus	Paper
	GCE A LEVEL – May/June 2014	9701	42

Section B

6. (a) (i)

	Peptide bond correct Rest of structure correct (skeletal, displayed or structural formula, or a mix)	[1]
(ii)	Condensation or nucleophilic substitution or addition-elimination	[1]
(iii)	Water/H ₂ O	[1]
		4

5.14	
DNA	RNA
Contains deoxyribose	Contains ribose
Contains thymine/T	Contains uracil/U
Double strand/chain/helix or two strands	Single strand/chain

			[Total: 10	[]
			:	3
(iii)	Changing A (<i>or</i> the 14th base) into U		[1]
(ii)	Mutations <i>or</i> addition/insertion/deletion/substitution/replacement base)	(of	a [1]
(c)	(i) (met) - leu - thr - pro - glu		[1]

			www.dynamicpapers			
Page 8		3	Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – May/June 2014	9701	42	
(a)	(i)	(Eleo	ctrophoresis): the size/shape/ M_r of the amino acid or	its charge	[1	
(ii) (Paper chromatography): the partition of the amino acid between, <i>or</i> the relative solubility of the compound in, the 2 phases <i>or</i> solvent/water and						
	stationary phase/filter paper.				[1	
					2	
(b)		Use	ninhydrin as a locating agent		[1	
					1	
(c)		The	R _f value or retardation/retention factor or the distant	ce travelled by the)	
		acid	compared to that travelled by a standard sample of the	e amino acid	[1	
					1	
(d)		R – 9	glutamic acid; S – glycine; T – lysine		3 × [1	
					3	

(e)

3 × [1]

3

[Total: 10]

			www.dynamicpapers.com			
Page 9		9	Mark Scheme	Syllabus	Paper	
			GCE A LEVEL – May/June 2014	9701	42	
8.	(a) (i)	PTF	addition polymer (e.g. polyethene, polypropene, E, PVA, <i>Teflon</i>)		[1]	
	(ii)		condensation polymer (e.g. polyamide, polyester, nyle, <i>Kevlar</i> , <i>Nomex</i>)	on, <i>Terylene</i> , PET,	, [1]	
					2	
	(b)	Hyd	rolysis or nucleophilic substitution		[1]	
		Este	er and amide/peptide or –CO ₂ – and –CONH–		[1]	
					2	
	(c)		Г.	-		
	0	CH ₃	or or	O CH ₃		
		Corr	ect ester linkage		[1]	
		CH₂	side chain on only one monomer unit		[1]	
		01.3				
					2	
	(d)	Plan C=C	nt materials do not generally contain unsaturated hydro ;	ocarbons/alkenes/	/ [1]	
					1	
	(e) (i)	Y va	n der Waals' forces		[1]	
		Z hy	drogen bonding		[1]	
	(ii)	7 h	ecause it can form hydrogen bonds with water or it	contains polar CO)	
	()		NH groups		[1]	
					3	
					[Total: 10]	