UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2012 question paper for the guidance of teachers

9701 CHEMISTRY

9701/41

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Page 2 Mark Scheme: Teachers' version		Paper
	GCE AS/A LEVEL – May/June 2012	9701	41

1 (a) (i) the enthalpy change/released when 1 mole is formed [1]

of ionic lattice from the gas phase ions

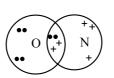
[1]

(ii)
$$Mq^{2+} + O^{2-} \longrightarrow MqO$$

[1] [3]

(b) measurements needed:

[3]


(c)
$$\Delta H = 148 + 736 + 1450 + 496/2 - 141 + 798 - 3791$$

= -552 kJ mol⁻¹

[3] [3]

(d)
$$Na_2O(s) + H_2O(aq/l) \longrightarrow 2NaOH(aq)$$
 [1]
 $MgO(s) + H_2O(aq/l) \longrightarrow Mg(OH)_2(s) \text{ or } Mg(OH)_2(aq)$ [1]
 $pH 12.5-14 [NaOH] \text{ AND } 8-10.5 [Mg(OH)_2] \text{ respectively}$ [1]

[Total: 12]

2. (a) (i)

[1]

(ii)
$$-180 \text{ kJ mol}^{-1}$$
 [1

[1]

(iii) (formation of NO is endothermic) so high T and equilibrium pushed over to NO side. or high T and needed to break N-N bond in N₂ [1]

(iv)
$$-180 = 2 E(NO) - 994 - 496$$
 [1]
 $E(NO) = +655 \text{ kJ mol}^{-1}$ [1]

[5]

(b) (i) (from 1 and 2:) as
$$p(NO)$$
 halves, rate decreases to $\frac{1}{4}$, so order = 2 [1] (from 1 and 3:) as $p(H_2)$ halves, so does rate, so order = 1 [1]

[1]

(ii) rate =
$$k p_{NO}^2 p_{H2}$$
 [1]
units (of k) are atm⁻² s⁻¹

www.dynamicpapers.com				
	Syllabus		Paper	

9701

Paper

41

		OOL AU	A LLVLL May/ounc Lot	7101	
	(iii)	cross out all species c	$H_2 + N_2O \rightarrow N_2O + O + H_2O + N_2 +$ ommon to both sides:	_	[1]
			$H_2 + M_2 O \rightarrow M_2 O + O + H_2 O + N_2 + O + 2H_2 \rightarrow N_2 + 2H_2 O)$	H ₂ O	[1]
	(iv)	either: step 2 since it i O formed from NO or: step 3 since it ii N ₂ O formed from NO	-		[1] [1] <i>[1]</i> [8]
(c)	(i)	NO			[1]
	(ii)	$3Fe^{2+} + 4H^{+} + N$ (allow $Fe^{2+} + H^{+} + H$	$NO_3^- \longrightarrow 3Fe^{3+} + NO + 2H_2O$ $NO_2 \longrightarrow Fe^{3+} + NO + H_2O$		[1]
	(iii)	dative/coordinate bon	ding		[1]
	(iv)	$[Fe(H_2O)_{6-n}(NO)_n]^{2+}$	(n = 1-6)		[1] [4]
				[Tot	al:17]
3. (a)	(i)	$C_{16}H_{10}N_2O_2$			[1]
	(ii)	ketone, alkene, amine	, aryl (benzene/arene/phenyl)	(any 3)	[2] [3]
(b)	(i)	reduction or redox			[1]
	(ii)	NaBH ₄ or LiA <i>l</i> H ₄ (NO	T H ₂ + Ni)		[1] [2]
(c)	1.	2,4-DNPH [1]	red/yellow-orange/orange ppt.	[1] no reaction	
	2.	Na metal [1]	no reaction	gas given off/fizzing	[1]
		$PCl_5/SOCl_2$ [1] PCl_3 + warm	no reaction	steamy fumes/fizzing misty/white fumes	
	2 x	"no reaction"	must be l	inked to "correct reagent"	[1] [5]

Mark Scheme: Teachers' version

GCE AS/A LEVEL – May/June 2012

Page 3

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	41

(d) (i)

[1]

(ii)
$$M_r = 262$$
, so 2.5 g = 2.5/262 = 9.54 × 10⁻³ mol (1 mol indigo absorbs 9 mol of H₂) so volume of H₂ = 9 × 24 – 9.54 × 10⁻³ = **2.06 dm³** (2060 cm³)

[1]

[1] **[3]**

(e)

2 x Br **on C=C** [1]

a Br on each ring [1]

TWO non-adjacent Br on each ring [1]

[3]

[Total: 16]

4 (a) (i) volatilities decrease down the group

[1]

due to greater van der Waals (VDW) forces (intermolecular is not sufficient)

[1]

due to larger no of electrons

[1]

(ii) CCl₄ does not react with water

[1]

CCl₄ unreactive due to no **d**-orbitals

[1]

GeCl₄ and PbCl₄ hydrolyse/react

[1]

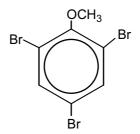
$$MCl_4 + 2H_2O \longrightarrow MO_2 + 4HCl (M = Ge or Pb)$$

[1] **[7]**

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	41

(b) (i) B is $PbSO_4$ and C is $PbCl_2$ [1]

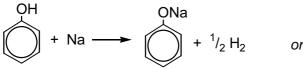
(ii)
$$SnO_2 + 2H_2SO_4 \longrightarrow Sn(SO_4)_2 + 2H_2O$$
 [1]


$$PbO_2 + H_2SO_4 \longrightarrow PbSO_4 + H_2O + \frac{1}{2}O_2$$
 [1]

$$PbO_2 + 6HCl \longrightarrow H_2PbCl_6 + 2H_2O$$
 [1]

$$H_2PbCl_6 \longrightarrow PbCl_2 + 2HCl + Cl_2$$
 [1] [5 max 4]

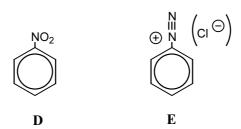
[Total: 11]


5 (a) (i)

[1]

(ii) Na metal or Na Fizzes/gas given off with phenol or phenol $C_6H_5OH + Na \rightarrow C_6H_5ONa + \frac{1}{2}H_2$ or C_6H_5OH

NaOH [1] phenol dissolves (anisole doesn't) [1] $C_6H_5OH + OH^- \rightarrow C_6H_5O^- + H_2O$ [1]


OH ONa + H₂O

(neutral) iron(III) chloride Solution goes purple/violet $3C_6H_5OH + FeCl_3 \rightarrow Fe(OC_6H_5)_3 + 3HCl$

[1] [1] **[4]**

[1]

(b) (i)

[1] + [1]

step 4 is conditional of structure E

step 4: warm + in H_2O [1] [5 max 4]

www.dynamicpapers.com

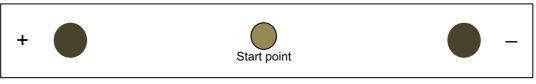
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	41

F must be an amide

(ii) reaction 1: H_2 + Ni or LiAlH $_4$ [1] reaction 2: heat + aqueous HCl [1] [6]

[Total: 14]

[4]


- 6 (a) (i) Condensation [1]
 - (ii) ala-ala, gly-gly, ala-gly [2]
 - (b) (i) Correct sugar-phosphate backbones (with two sugars and one phosphate attached) [1]
 - C G pair correct **or** A T pair correct [1]
 - deoxyribose label **and** all bases coming from sugars [1]
 - (ii) Replication would be slower/difficult because the DNA/strands could not be separated [1]
 - (c) (i) Some amino acids have more than one (triplet) code [1]
 - (ii) loss/disruption of ionic bonding/hydrogen bonding [1]
 - (iii) There would be a potential loss of all tertiary structure or frameshift deletion of a base changes protein structure [1]

[Total: 10]

[3]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	41

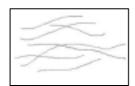
7 (a)

Glutamic acid Glycine Lysine

- (b) (i) Ratio of the <u>concentration</u> of a solute in each of two solvents or equilibrium constant representing the distribution of a solute between two solvents. [1]
 - (ii) illustration of some method of getting into our body via the food chain [1]

(c) (i)
$$156 = C_3H_6^{35}Cl^{79}Br^+$$
 [1] $158 = C_3H_6^{37}Cl^{79}Br^+$ [1] $158 = C_3H_6^{35}Cl^{81}Br^+$ [1] $160 = C_3H_6^{37}Cl^{81}Br^+$ [1]

(ii)
$$m/e = 15$$
 Species = CH_3^+ [1] [5 max 4]


[Total: 10]

www.dynamicpapers.com

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2012	9701	41

8 (a)

LDPE HDPE (The close packing of unbranched side chains means)

minimum of 2 chains suitable sketches [1]

LDPE more space between the chains/polymers or HDPE less empty space between the chains [1]

[2]

(b) van der Waals' (VDW) forces are weaker

[1] [1] **[2]**

(c)

Addition OR	condensation
requires C=C/double bond	does not need C=C/double bond
uses the same functional group	needs two different functional groups
same general (empirical) formula as monomer	different formula
no loss of small molecule/H ₂ O/HCl	small molecule /H ₂ O/HCl is formed

	Any	two differences	[1] [2]
(d)	(i)	(through its long chain of) delocalised electrons/mobile electrons free electrons is not sufficient	[1]
	(ii)	planar	[1]
		the π bonds/p-orbitals overlap (with each other)	[1]
	(iii)	C_8H_6 C_4H_3	[2]

[5 max 4]

[Total: 10]