UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

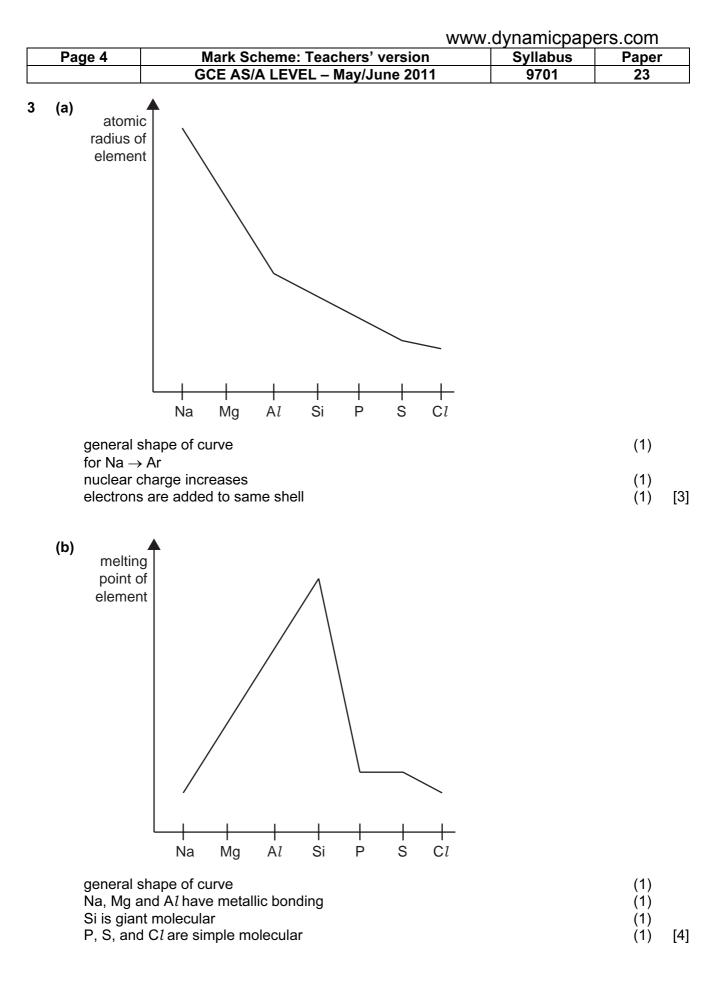
9701 CHEMISTRY

9701/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.


• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	2 Mark Scheme: Teachers' version	Syllabus	Paper	•
•	GCE AS/A LEVEL – May/June 2011	9701	23	
-	hout this question, deduct one mark only for sig. fig. err	or.		
(a) (i)	the volume of solution A present in one 'typical ant' is $7.5 \times 10^{-6} \times 1000 = 7.5 \times 10^{-3} \text{ cm}^3$		(1)	
(ii)	the volume of pure methanoic acid in one 'typical ant' is 7.5 x 10^{-3} x $\frac{50}{100}$ = 3.75 x 10^{-3} gives 3.8 x 10^{-3} cm ³ 100	S		
	allow ecf on (i)		(1)	
(iii)	no. of ants = <u>1000</u> = 263157.8947 gives 2.6 x 10 ⁵ 3.8 x 10 ⁻³			
	use of 3.75×10^{-3} gives 26666666667 = 2.7 x 10^{5}		(1)	
(b) (i)	the volume of solution A , in one ant bite is $\frac{80}{100} \times 7.5 \times 10^{-3} = 6.0 \times 10^{-3} \text{ cm}^{-3}$ 100			
	allow ecf on (a)(i)		(1)	
	the volume of pure methanoic acid in one bite is $\underline{50} \times 6.0 \times 10^{-3} = 3.0 \times 10^{-3} \text{ cm}^3$ 100			
	allow ecf on first part of (b)(i)		(1)	
(ii)	the mass of methanoic acid in one bite is $3.0 \times 10^{-3} \times 1.2 = 3.6 \times 10^{-3} g$			
	allow ecf on (b)(i)		(1)	
(c) (i)	$HCO_2H + NaHCO_3 \rightarrow HCO_2Na + H_2O + CO_2$		(1)	
(ii)	$46 \text{ g HCO}_2\text{H} \equiv 84 \text{ g NaHCO}_3$		(1)	
	5.4 x 10 ⁻³ g HCO ₂ H = $\frac{84 \text{ x } 5.4 \text{ x } 10^{-3}}{46}$ g NaHCO ₃			
	= 9.860869565 x 10 ⁻³ = 9.9 x 10 ⁻³ g NaHCO ₃		(1)	
			[Tota	۱·

		www.dynamicpapers.com				
	Pag	je 3	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2011	9701	23	
2		ideal gas	e no inter-molecular forces present between ideal gas r s molecules have no volume s between ideal gas molecules are perfectly elastic s molecules behave as rigid spheres	nolecules	(any 2)	[2]
		high tem low pres			(1) (1)	[2]
		nitrogen	eal neon nitrogen ammonia least ideal has stronger van der Waals' forces than argon a has hydrogen bonding as well as van der Waals' forc		(1) (1) (1)	[3]
	. ,	average	easing temperature, kinetic energy of molecules increases ecular forces are more easily broken		(1) (1)	[2]
	(e)	18			(1)	[1]
	(f)	(i) both	have very similar/same van der Waals' forces		(1)	
		(ii) CH₃	F has permanent dipole		(1)	[2]
					[Total:	: 12]

	WWV	v.dynamicpape	ers.com
Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – May/June 2011	9701	23
electrica conductivit of elemer	у		
Na, Mg and Si is a sem	Na Mg Al Si P S Cl ape of curve d Al have increasing no. of outer shell electrons i-conductor l are covalent/simple molecular		(1) (1) (1) (1) [·
(d) (i) Na ₂ O SiO ₂	ionic covalent		(1) (1)
P_4O_6	van der Waals' forces/induced dipoles		(1)

	www.dynamicpapers.cc			
Page 6	Mark Scheme: Teachers' version	Syllabus	Paper	,
	GCE AS/A LEVEL – May/June 2011	9701	23	
(a) C ₉ H ₁₆	₆ O ₂		(1)	[1
S	aldehyde not carbonyl secondary alcohol		(1) (1) (1)	
• • •	Br₂/bromine allow KMnO₄/H ⁺ decolourised decolourised		(1) (1)	[5
	$CH_3(CH_2)_4COCO_2H$ HO_2CCO_2H or CO_2		(1) (1)	
(ii) C	CH ₃ (CH ₂) ₄ CH(C <i>l</i>)CH=CHCHO		(1)	
(iii) (CH ₃ (CH ₂) ₄ CH(OH)CH=CHCH ₂ OH		(1)	[4
			[Total:	: 10

	www.dynamicpapers.			s.com	
Page 7	7	Mark Scheme: Teachers' version	Syllabus	Paper	•
		GCE AS/A LEVEL – May/June 2011	9701	23	
(a) (i)	C ₇ H	₁₄ O ₂		(1)	
(ii)	one			(1)	[2]
(b) (i)		D ₇ ²⁻ /H⁺ i orange reen		(1) (1) (1)	
(ii)		hyl-3-methylbutanal/(CH₃)₂CHCH(C₂H₅)CHO/the corre al oxidation of alcohol will produce aldehyde	sponding aldehyde	e (1) (1)	
(iii)		x because alcohol must be fully oxidised		(1)	[6]
	ohol is	s tertiary e oxidised		(1) (1) (1)	[3]
(d) H–	н - С- Н	$ \begin{array}{c} H \\ \hline \\ \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$			
	rect s	H tructure lavedCO_C_H_ group (allow ecf on wrong ester		(1)	

fully displayed	–CO₂C₂H₅ group (allow ecf on wrong esters)	(1)	
correct chiral C	atom (allow ecf on wrong esters)	(1)	[3]

[Total: 14]