UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	ers.com Paper			
1 4.90 2	GCE AS/A LEVEL – May/June 2011			21		
	kanes/paraffins o t hydrocarbon					
(b) 2 C ₁₄	H_{30} + 43 $O_2 \rightarrow$ 28 CO_2 + 30 H_2O or					
C ₁₄ H	$_{30}$ + ⁴³ / ₂ O ₂ \rightarrow 14 CO ₂ + 15 H ₂ O		(1)	[
(c) (i) r	mass of C ₁₄ H ₃₀ burnt					
<u>8</u>	<u>8195 x 10.8</u> = 88.506 = 88.5 t 1000		(1)			
(ii) r	mass of CO₂ produced					
I	$M_{\rm r}$ of $C_{14}H_{30}$ = (14 x 12 + 30 x 1) = 198		(1)			
2	2 x 198 t of $C_{14}H_{30} \rightarrow 28 \text{ x } 44 \text{ t of } CO_2$					
8	$\begin{array}{c} 38.5 \text{ t of } C_{14}H_{30} \rightarrow \underline{28 \times 44 \times 88.5} \\ 2 \times 198 \end{array}$		(1)			
=	= 275.3 t of CO ₂		(1)			
	allow 275.4 t if candidate has used 88.506 allow ecf on wrong value for M_r of $C_{14}H_{30}$			[
(d) n = <u>H</u>	$\frac{PV}{P} = \frac{6 \times 10^5 \times 710 \times 10^{-6}}{2000}$		(1)			
= 0	RT 8.31 x 293).175		(1)	[
(e) <i>P</i> = <u>r</u>	$\frac{RT}{V} = \frac{0.175 \times 8.31 \times 278}{710 \times 10^{-6}}$		(1)			
= 5	69410.5634 Pa = 5.7 x 10 ⁵		(1)			
allow	r ecf on (d)					
			[Total:	: 1		

Page 3		Mark Scheme: Teachers' version	dynamicpape Syllabus	Paper	
i age	0	GCE AS/A LEVEL – May/June 2011	9701	21	
2 (a) (i)					
		ller hydrocarbons are more useful or ller hydrocarbons are more in demand		(1)	
(ii)		g high temperatures/thermal cracking or g catalysts/catalytic cracking		(1)	
(iii)	C ₁₄ F C ₁₄ F	$\begin{array}{l} H_{30} \rightarrow C_7 H_{16} + C_7 H_{14} \text{ or} \\ H_{30} \rightarrow C_7 H_{16} + C_2 H_4 + C_5 H_{10} \text{ or} \\ H_{30} \rightarrow C_7 H_{16} + C_3 H_6 + C_4 H_8 \text{ or} \\ H_{30} \rightarrow C_7 H_{16} + 2 C_2 H_4 + C_3 H_6 \end{array}$		(1)	
	do n	ot allow any equation with H ₂			[4]
(b) eth	nanol ł	nas hydrogen bonding, ethanethiol does not		(1)	[1]
(c) (i)	2 C ₂ ł corre	$_{5}SH + {}^{9}I_{2}O_{2} \rightarrow 2CO_{2} + SO_{2} + 3H_{2}O \text{ or}$ $H_{5}SH + 9O_{2} \rightarrow 4CO_{2} + 2SO_{2} + 6H_{2}O$ ect products ect equation which is balanced		(1) (1)	
(ii)	enha	CO₂ anced greenhouse effect al warming		(1) (1)	
	dam disse	6O₂ ation of acid rain age to stonework of buildings/ olving of aluminium ions into rivers/ age to watercourses or forests/		(1)	
	aqua	atic life destroyed/ osion of metals		(1)	[6]
(d) he	lp dete	ect leaks of gas		(1)	[1]
pre	essure	ure of 450°C of 1 – 2 atm adium(V) oxide/vanadium pentoxide catalyst		(1) (1) (1)	[3]
				[Total:	15]

Ра	ge 4				achers' version		Syllabu		
				AS/A LEVEL	– May/June 201	.1	9701	21	
		aq) C<i>I</i>₂	•	dilute HC <i>l</i>	Ca(s)	roast	in air	V (s) CaO	
			1		H ₂ O	(I)	H ₂ O(I)	dilute HNO ₃	7
		Na ₂ C	O₃(aq)		X(s) Ca(OH)₂			W(aq) Ca(NO ₃) ₂	
	,				dilute H ₂ SO ₄	_	reaction 1	1	J
		((s) aCO ₃			Z(s) CaSO4	K			
(a)	U V W X Y	/ 	$\begin{array}{c} CaCl_2\\ CaO\\ Ca(NO_3)_2\\ Ca(OH)_2\\ CaCO_3 \end{array}$					(1) (1) (1) (1) (1))))
(b)				tube or a boilin tly' or 'reflux'				(1))
(c)		Ca to I Ca + 2	J HC <i>l</i> → Ca(C <i>l</i> ₂ + H ₂				(1))
		V to W CaO +		Ca(NO ₃) ₂ + H	₂ O			(1))
		U to Y CaCl₂	+ Na ₂ CO ₃ -	\rightarrow CaCO ₃ + 2N	laC1			(1))
				aO + 4NO ₂ + C				(1)	

(d) $Na_2SO_4(aq)/K_2SO_4(aq)$ or formula of any soluble sulfate (1) [1]

Page 5	WW\ Mark Scheme: Teachers' version	Syllabus	Paper	,
	GCE AS/A LEVEL – May/June 2011	9701	21	
(e) (i)	Ca to X colourless gas formed/fizzing/effervescence/bubbles or Ca dissolves or white precipitate/suspension formed		(1)	
(ii)	strongly exothermic/vigorous reaction or steam formed/steamy fumes or surface crumbles do not allow white ppt.		(1)	[2
			[Total:	: 13
(a) (i)	nucleophilic addition both words are necessary		(1)	
(ii)	NaCN and H₂SO₄ or HCN plus CN [−] do not allow HCN on its own		(1)	
(iii)	correct δ + and δ -, i.e.		(1)	[3
(b) (i)	correct organic product			
	(CH ₃) ₂ C==N-NHNO ₂			
	C=N bond must be clearly shown H_2O formed/ equation balanced		(1) (1)	[2
(ii)	H ₃ C			

(1) [1]

[Total: 6]

с____н

H₃C

Page 6			dynamicpape Syllabus	Paper	
i age e	,	GCE AS/A LEVEL – May/June 2011	9701	21	
(a) Ca	C ₂ +	$2H_2O \rightarrow Ca(OH)_2 + C_2H_2$		(1)	[1]
(b) (i)	step step	addition		(1) (1) (1)	
(ii)		ent NaOH/KOH/OH [−] litions in alcohol/ethanol allow conditions mark if reagent is correct		(1) (1)	[5]
(c) (i)		CH₃CHO (as minimum) CH₃CO₂H (as minimum)		(1) (1)	
(ii)		3 is addition 4 is oxidation/redox		(1) (1)	[4]
(d) (i)	C ₂ H; equa H ₂ C	bustion $_{2}(g) + {}^{5}/_{2}O_{2}(g) \rightarrow 2CO_{2}(g) + H_{2}O(I)$ or ation must be for the combustion of one mole of C ₂ H ₂ o must be shown as liquid sect state symbols in this equation		(1) (1)	
	2C(s	hation $F_{2}(g) \rightarrow C_{2}H_{2}(g)$ hark for state symbols here		(1)	
(ii)	let Z	L be ΔH^{e}_{f} of C ₂ H ₂			
		$C_2H_2 + {}^{5}/_2O_2 \rightarrow 2CO_2 + H_2O$			
	∆ <i>H</i> ^e f	Z 0 2(-394) -286			
	∆H ^e o	g = −1300 = 2(-394) + (-286) – Z		(1)	
		nce Z = 2(-394) + (-286) – (-1300)			
	valu sign	26 kJ mol ⁻¹ e v ecf on wrong equation		(1) (1)	[6]
	GIOV			Total	

[Total: 16]