Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers, Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Question Paper

Introduction First variant Question Paper Second variant Question Paper

Mark Scheme

Introduction
First variant Mark Scheme
Second variant Mark Scheme

Principal Examiner's Report

Introduction
First variant Principal Examiner's Report
Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9701 CHEMISTRY

9701/21

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	21

1 (a) $Al \ 1s^2 \ 2s^2 2p^6 \ 3s^2 3p^1$

(1)

Ti $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$ or

1s² 2s²2p⁶ 3s² 3p⁶ 4s²3d² penalise any error

(1) [2]

(b) (i) pass chlorine gas over heated aluminium

(1) (1)

(ii) aluminium glows white/yellow solid formed chlorine colour disappears/fades

(1) (1)

(1) (any 2)

(iii)

correct numbers of electrons, i.e.

3 • per Al atom and 7x per Cl atom

dative bond Cl to Al clearly shown by $_{x}^{x}$ (1)

(c) chlorine is a strong/powerful oxidising agent (1)

	Paper
GCE A/AS LEVEL – May/June 2009 9701	21

(d) (i)
$$n(Ti) = \frac{0.72}{47.9} = 0.015$$
 (1)

(ii)
$$n(Cl) = (2.85 - 0.72) = 0.06$$
 (1) 35.5

(iii)
$$0.015:0.06 = 1:4$$

empirical formula of **A** is TiC l_4
Allow ecf on answers to (i) and/or (ii). (1)

(iv) Ti +
$$2Cl_2 \rightarrow TiCl_4$$
 (1)
Allow ecf on answers to (iii). [4]

[Total: 14 max]

2 (a) (i)
$$Mg^{+}(g) \rightarrow Mg^{2+}(g) + e^{-}$$
 eqn. (1) state symbols (1) (ii) $736 + 1450 = +2186 \text{ kJ mol}^{-1}$ (1) [3]

(c) (i)
$$Mg_3N_2 + 6H_2O \rightarrow 3Mg(OH)_2 + 2NH_3$$
 (1)

(ii)
$$Mg_3N_2 N is -3$$
 (1) $NH_3 N is -3$ (1)

No **because**there is no change in the oxidation no. of N

e.c.f on **(c)(i)** and values of oxidation numbers

(1) [4]

[Total: 11]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	21

3 (a)
$$2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$$
 (1) [1]

(b)
$$SO_2$$

$$NO_x / NO_2 / NO - not N_2O$$
 (1)
Pb compounds - not Pb (1) (any 2)

If more than two answers are given any wrong ones will be penalised. [2]

or shows a reduction in volume

increase [CO] or
$$[H_2]$$

or remove CH_3OH (1)

correct explanation in terms of the effect of the change on the position of equilibrium or on the rate of reaction (1) (any two pairs)

(d) (i) removes CO_2 (1)

(ii)
$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$

initial moles 0.50 0.50 0.20 0.20
equil. moles (0.50-x) (0.50-x) (0.20+x) (0.20+x)
equil. concn. $(0.50-x)$ $(0.50-x)$ $(0.20+x)$ $(0.20+x)$ $(0.20+x)$

$$K_{c} = \underline{[CO][H_{2}O]}$$

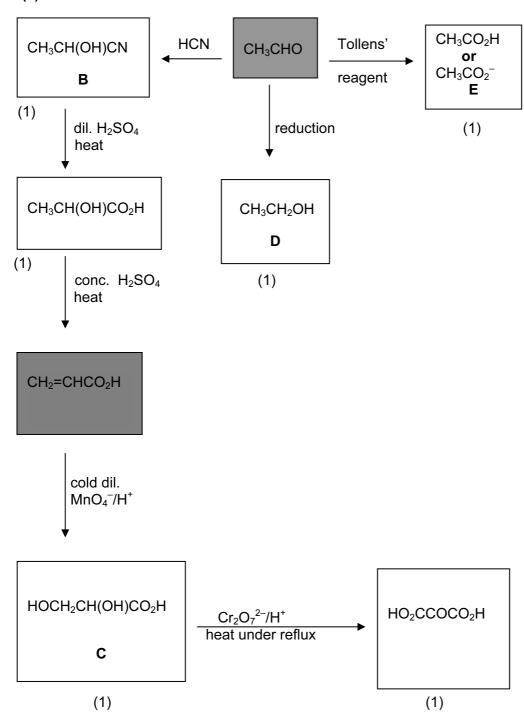
$$[CO_{2}][H_{2}]$$
(1)

$$K_c = \frac{(0.20+x)^2}{(0.50-x)^2} = 1.44$$
 (1)

gives
$$x = 0.18$$
 (1)

at equilibrium,

$$n(CO_2) = n(H_2) = 0.32$$
 and $n(CO) = n(H_2O) = 0.38$ (1)


Allow ecf on wrong values of x that are less than 0.5. [7]

[Total: 13 max]

[4]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	21

4 (a)

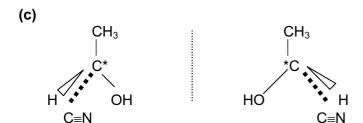
one mark for each correct structure

[6]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	21

(b) C + D

HOCH₂CH(OH)CO₂C₂H₅ as minimum or


$$\begin{array}{c} H \\ | \\ HOCH_2CCO_2C_2H_5 \\ | \\ OH \end{array} \tag{1}$$

Allow e.c.f on candidate's C and/or D.

$$C + E$$

Allow either monoester. (1) [2]

Allow e.c.f on candidate's C and/or E.

correct chiral carbon atom indicated

one structure drawn fully displayed with C≡N

mirror object/mirror image pair correctly drawn in 3D

(1)

[3]

[Total: 11]

5 (a) CH₃COCH₂C(CH₃)₂ or | OH (by addition of one molecule of $(CH_3)_2CO$ across the >C=O bond of another)

CH₃COCHCH(CH₃)₂ | OH (by working backwards from ${\bf G}$ and adding one molecule of H_2O across the C=C bond)

(1) [1]

[3]

(1)

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	21

(b)

functional group in G	reagent used in test	what would be seen
alkene	Br ₂	decolourised
	or KMnO₄(aq)	
or	or	or
carbonyl	2,4-dinitro-	yellow/orange/red
	phenylhydrazine/	colour or ppt.
	Brady's reagent	
(1)	(1)	(1)

(c) (i) dehydration/elimination

(ii) $Al_2O_3/P_4O_{10}/conc. H_2SO_{4/}conc. H_3PO_4$ (1) [2]

(d) NaBH₄ or LiAlH₄ (1)

in water **or** methanol/ethanol **or** in **dry** ether (1) [2] **or** mixture of alcohol and water

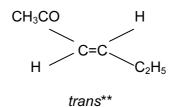
not ether

Solvent mark is only awarded if reagent is correct.

(e)

$$CH_3CO$$
 H $C=C$ CH_3 cis^*

 CH_3CO CH_3 C=C H $trans^{**}$


* allow this to be called Z

** allow this to be called E

or

$$CH_3CO$$
 C_2H $C=C$ H cis^*

* allow this to be called Z

** allow this to be called E

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	21

or

CH₃COCH₂

correct cis and trans

opposite sides relative to the C=C bond.

explanation

For *cis* and *trans* answers, the explanation should be in terms of the methyl groups (first pair of isomers) or hydrogen atoms (second and third pairs of isomers) being on the same or

CH₃COCH₂

For E/Z answers, the explanation will need to involve the relative sizes of the CH_3C - group and the CH_3 - group. This really only affects the first pair of isomers.

[Total: 11]

[3]

(1)

(1)

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2009 question paper for the guidance of teachers

9701 CHEMISTRY

9701/22

Paper 22 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

(1)

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	22

1 (a) $Al 1s^2 2s^2 2p^6 3s^2 3p^1$

Ti $1s^2 2s^2 2p^6 3s^2 3p^6 3d^2 4s^2$ or

 $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^2$ penalise any error (1)

(b) (i) pass chlorine gas (1) over heated aluminium (1)

(ii)aluminium glows(1)white/yellow solid formed(1)chlorine colour disappears/fades(1)(any 2)

(iii)

correct numbers of electrons, i.e.

3 • per Al atom and 7x per Cl atom

dative bond Cl to Al clearly shown by $_{x}^{x}$ (1)

(c) chlorine is a strong/powerful oxidising agent (1)

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	22

(d) (i)
$$n(Ti) = \frac{0.72}{47.9} = 0.015$$
 (1)

(ii)
$$n(Cl) = \frac{(2.85 - 0.72)}{35.5} = 0.06$$
 (1)

(iii)
$$0.015:0.06 = 1:4$$

empirical formula of **A** is TiC l_4
Allow ecf on answers to (i) and/or (ii). (1)

(iv) Ti +
$$2Cl_2 \rightarrow TiCl_4$$
 (1)
Allow ecf on answers to (iii). [4]

simple molecular **or**mention of weak intermolecular forces **or**weak van der Waals's forces between molecules

(1) [2]

[Total: 14 max]

2 (a) (i)
$$Ca^{+}(g) \rightarrow Ca^{2+}(g) + e^{-}$$
 equation (1) state symbols (1)

(ii)
$$590 + 1150 = +1740 \text{ kJ mol}^{-1}$$
 (1) [3]

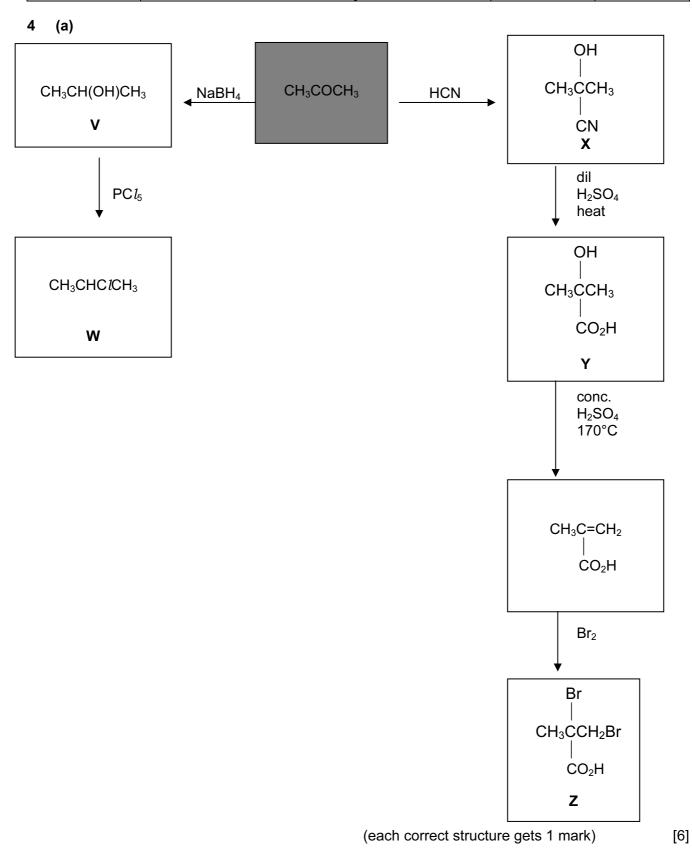
(ii) dissolves/vigorous reaction
$$0-4$$
 (1) (1)

(c) (i)
$$P_4S_{10} + 16H_2O \rightarrow 4H_3PO_4 + 10H_2S$$
 (1)

No **because**there is no change in the oxidation no. of P
ecf on answer to **(c)(i)**and on calculated oxidation numbers

[Total: 11]

[4]

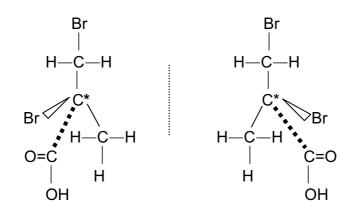

3

www.dvnamicpapers.com

Pa	ge 4	Mark Scheme: Teachers' version GCE A/AS LEVEL – May/June 2009	Syllabus 9701	Paper 22
(a)	2CH₃OH	+ 3O ₂ → 2CO ₂ + 4H ₂ O	(1)	[1]
(b)	SO ₂		(1)	
	NO _x / NO	O_2 / NO – not N_2 O	(1)	
	Pb comp	ounds – not Pb	(1)	(any 2)
	if more th	nan two answers are given any wrong ones will be pen	alised	[2]
(c)		erature forward reaction is exothermic	(1) (1)	
		ssure forward reaction goes to fewer molecules a reduction in volume	(1) (1)	
	or remov	[CO] or [H ₂] re CH ₃ OH xplanation in terms of the effect of the change	(1)	
		osition of equilibrium or on the rate of reaction	(1)	
			(any two pairs)	[4]
(d)		oves CO ₂ h causes greenhouse effect/global warming	(1) (1)	
	(ii)	$CO_2 + H_2 \rightleftharpoons CO + H_2C$)	
	equi	I moles 0.50 0.50 0.20 0.2 I. moles (0.50-x) (0.50-x) (0.20+x) (0.21 I. concn. (0.50-x) (0.50-x) (0.20+x) (0.21 1 1 1	0+x) (1)	
	K c =	: [CO][H ₂ O] [CO ₂][H ₂]	(1)	
	<i>K</i> _c =	$\frac{(0.20+x)^2}{(0.50-x)^2} = 1.44$	(1)	
	give	s x = 0.18	(1)	
	n(C0	quilibrium, D_2) = $n(H_2)$ = 0.32 and D_1) = $n(H_2O)$ = 0.38	(1)	
	Allov	v ecf on wrong values of x that are less than 0.5.		[7]

[Total: 13 max]

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	22


Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	22

(b) (i) Z

allow ecf on candidate's **Z** or other **chiral** compound

(1)

(ii)

chiral centre clearly shown by *

(1)

one structure drawn fully displayed

especially
$$-CO_2H$$
 group (1)

mirror object/mirror image pair correctly drawn in 3D

(1) [4]

(c) (i) Y + V

allow ecf on candidate's Y and/or V

(1)

(ii) Y + Z

$$\begin{array}{cccc} CH_3 & CH_3 \\ | & | \\ Br-C-CO_2-C-CO_2H & \textbf{or} \ CH_3C(CH_2Br)BrCO_2C(CH_3)_2CO_2H \\ | & | \\ CH_2Br & CH_3 \end{array}$$

allow ecf on candidate's Y and/or Z

(1) [2]

[Total: 11 max]

[3]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2009	9701	22

5 (a) CH₃CH(OH)CH₂CHO (by addition of one molecule of CH₃CHO across the >C=O bond of another)

or

CH₃CH₂CH(OH)CHO (by working backwards from **U** and adding

one molecule of H₂O across the C=C bond

'the other way') (1) [1]

(b)

6 (2) 1 11	1 1: ()	
functional group in U	reagent used in test	what would be seen
alkene	Br ₂	decolourised
	or KMnO₄(aq)	
	31 1 (14)	
•••		
or .	or	or
carbonyl	2,4-dinitro-	yellow/orange/red
not ketone	phenylhydrazine/	colour or ppt.
	Brady's reagent	
	Tracky o reagons	
or	or	or
~ -		.
aldehyde	Tollens' reagent	silver ppt./mirror
		black colour
	or	or
	Fehling's solution	brick red ppt.
(1)	(1)	(1)
(- /	(- /	(·)

(c) (i) dehydration/elimination (1)

(ii) $Al_2O_3/P_4O_{10}/conc. H_2SO_4/conc. H_3PO_4$ (1) [2]

(d) NaBH₄ or $LiAlH_4$ (1)

in water **or** methanol **or** ethanol **or** in **dry** ether (1) **or** mixture of water and alcohol

not ether

Solvent mark is only to be awarded if reagent is correct. [2]

Page 8	Page 8 Mark Scheme: Teachers' version		Paper
	GCE A/AS LEVEL – May/June 2009	9701	22

5 (e)

two structures (1) + (1) [2]

CH₃CH₂CH(OH)CH₂CHO

or

CH₃CH(OH)CH(CH₃)CHO

allow

 $\mathsf{CH_3CH}(\mathsf{OH})\mathsf{CH_2CH_2CHO}$

(1) [1]

[Total: 11]