UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary and Advanced Level

MARK SCHEME for the June 2005 question paper

9701 CHEMISTRY

9701/02

Paper 2 (Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. This shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

• CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the June 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Grade thresholds for Syllabus 9701 (Chemistry) in the June 2005 examination.

	maximum mark available	minimum mark required for grade:			
		А	В	E	
Component 2	60	48	42	27	

The thresholds (minimum marks) for Grades C and D are normally set by dividing the mark range between the B and the E thresholds into three. For example, if the difference between the B and the E threshold is 24 marks, the C threshold is set 8 marks below the B threshold and the D threshold is set another 8 marks down. If dividing the interval by three results in a fraction of a mark, then the threshold is normally rounded down.

June 2005

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 9701/02

CHEMISTRY Paper 2 (Structured Questions)

			www.dynami				cpapers.com	
	Page 1		Mark Scheme			Syllabus	Paper	
			A and AS LEVE	L – JUNE	2005		9701	2
1	(a)	same proton no./at different mass no./	omic no./no. of nucleon no./no	protons . of neutro	ons		(1) (1)	[2]
	(b)		1					
				numbe	r of			
		isotope	protons	neutro	ns	electrons		
		⁵⁰ Fe	26	30		26		
		0 ⁰⁰	2/	32		2/		
			(1)	(1)		(1)		
	(c) (i)	give one mark for e allow (1) if no column weighted mean/ave of an atom (not ele compared with ${}^{12}C$ one atom of ${}^{12}C$ ha [relative to ${}^{1}/{}_{12}$ th the or	each correct co mn is correct bu erage mass ment) as a mass of ex e mass of a ¹² C	lumn ut one row actly 12 atom wou	v is cor uld get	rrect 2]	(1) (1) (1)	[3]
		mass of 1 mol of a	toms				(1)	
		compared with "C	mana of 10 a				(1)	
		I MOI OI C has a	mass of 12 g				(1)	
	(ii)	$A_{\rm r} = \frac{54 \times 5.84 + 56}{100}$	<u>5 x 91.68 + 57 x</u>	<u>: 2.17</u>			(1)	
		= <u>5573.13</u> = 55. 100	7 to 3 sf				(1)	
		allow 55.9 if A _r is c	alculated using	99.69 ins	tead o	of 100		[5]
							רז	「otal: 10]
2	(a)	1 S + O ₂ \rightarrow SO 2 2SO ₂ + O ₂ \Rightarrow 3 SO ₃ + H ₂ O \rightarrow Allow sequences the	D_2 $2SO_3$ H_2SO_4 D_2SO_4	equil	(1)	equation	(1) (1) (1)	
		and include H_2S_2O	$_7$ before H ₂ SO ₄					
		Equilibrium mark is the SO ₂ /SO ₃ equal	s <u>only</u> scored if ion.	⇒ <u>only</u> ap	opears	in		[4]
	(b)	vanadium pentoxic	le/vanadium(V)	oxide/V ₂ 0	O ₅		(1)	[1]
	(c) (i)	$H^{x}_{o} \overset{oo}{\overset{oo}{{{}{{}{$					(1)	
	(ii)	non-linear/bent/V-s	shaped				(1)	

		www.dynamicpapers.com		
Page 2		Mark Scheme	Syllabus	Paper
		A and AS LEVEL – JUNE 2005	9701	2
	(iii)	H ₂ O has hydrogen bonds/H ₂ S does not <u>or</u> H ₂ S has van der Waals' forces only hydrogen bonds are stronger	(1)	
		H_2S has weaker intermolecular bonds than H_2O	(1)	[4]
	(d) (i)	$2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2$ from -2 (1) to +4 allow e.c.f. on equation	(1) (1)	
	(ii)	68.2g H ₂ S react with 3 x 24 dm ³ O ₂ 8.65g H ₂ S react with $3 \times 24 \times 8.65 = 9.13$ dm ³ 68.2	(1) (1)	
		allow 9.16 dm ³ if H ₂ S = 68 is used allow e.c.f on (d)(i)		[5]
	(e) (i)	an acid that is partially dissociated into ions	(1)	
	(ii)	$H_2S(g) + H_2O(I) \rightarrow H_3O^{+}(aq) + HS^{-}(aq)$		
		<u>or</u>		
		$H_2S(g)$ + aq \rightarrow H ⁺ (aq) + HS ⁻ (aq)		
		<u>or</u>		
		$H_2S(aq) \rightarrow H^{+}(aq) + HS^{-}(aq)$ equation (1) state symbols (1)		[3]
			ח	「otal: 17]
3	(a)	A $MgSO_4$ B $MgCI_2$ C $MgCO_3$ D MgO E $Mg(OH)_2$ F $Mg(NO_3)_2$		
		Accept name or formula		

but penalise when name and formula do not agree	(6 x 1)	[6]

		www.dynamicpapers.com				
	Page 3		Mark Scheme	Syllabus	Paper	
			A and AS LEVEL – JUNE 2005	9701	2	
	(b) (i)	Mg to o Mg + cpd C MgCO cpd F t 2Mg(N	cpd A $H_2SO_4 \rightarrow MgSO_4 + H_2$ to cpd D $_3 \rightarrow MgO + CO_2$ to cpd D $O_3)_2 \rightarrow 2MgO + 4NO_2 + O_2$	(1) (1) (1)	[3]	
	(11		$A_{\rm A} > M_{\rm C} + H_{\rm C}$	(1)	[1]	
	(II)) wig(Oi	$\eta_2 \rightarrow \text{MgO} + \Pi_2 \text{O}$	(1)	[1]	
				[1	Fotal: 10]	
4	(a) (i)	stage I	Cl ₂ /chlorine uvl/sunlight	(1) (1)		
		stage I	I KCN heat in ethanol	(1) (1)		
	(ii) stage l	II Br ₂ uvl/sunlight	(1) (1)	[6]	
	(b)	stage I	V H ₂ SO ₄ (aq)/HC <i>l</i> (aq) <u>or</u> NaOH(aq) followed by H ⁺ heat/reflux	(1) (1)		
		stage \	✓ NaOH(aq) heat	(1) (1)	[4]	
	(c) (i)	a carbo four dif	on atom in a molecule attached to fferent atoms or groups of atoms	(1)		
	(ii)	Br Br R-C-C:N <u>or</u> R- H	r/OH - C C = O H O H		
		correct one co both is	t cpd correctly displayed rrect isomer shown as 3D omers shown in	(1) (1)		
		mirror	object/mirror image arrangement	(1)	[4]	
				[Total	: 13 max]	

	www.dynamicpapers			com
Page 4		Mark Scheme	Syllabus	Paper
		A and AS LEVEL – JUNE 2005	9701	2
5	(a) C:⊦	$H:O = \frac{66.7}{12} \colon \frac{11.1}{1} \colon \frac{22.2}{16}$	(1)	
		= 5.56 : 11.1 : 1.39		
		= 4 : 8 : 1		
	C ₄ H	$H_8O = 72$ molecular formula = C_4H_8O	(1)	[2]
	(b) (i) pre	sence of C=C/alkene/unsaturated	(1)	
	(ii) -Oł	H group (in -CO₂H <u>or</u> -OH) present	(1)	[2]
	(c) (i) ald	ehyde/ketone/carbonyl	(1)	
	(ii) prir	mary alcohol	(1)	[2]
	(d) res two	tricted rotation about a C = C bond different groups on each side of C = C	(1) (1)	[2]
	(e)	H CH ₂ OH		
		CH ₃ C=C H		
	one	e fully correct structure	(1)	
	cor	rectly labelled <u>cis-trans</u>	(1)	
	allc tha	ow (1) for correctly labelled <u>cis-trans</u> structures t are C ₄ H ₈ O but incorrect		[2]