

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/42 March 2017

Paper 4 A Level Structured Questions MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Question	Answer	Marks
1(a)(i)	$(28 \times 0.922) + (29 \times 0.047) + (30 \times 0.031) = 28.11$	1
1(a)(ii)	$SiCl_4 + 4H_2O \rightarrow Si(OH)_4 + 4HCl$	1
1(a)(iii)	CI CI CI CI CI CI CI	1
	bond angle = 109.5	1
1(a)(iv)	SiO ₂	1
	SiO ₂ is giant covalent/molecular but SiC4 is simple molecular/covalent	1
1(b)(i)	$2\mathbf{A}(NO_3)_2 \rightarrow 2\mathbf{A}O + 4NO_2 + O_2$ correct formula balanced equation	2 1 1
1(b)(ii)	giant ionic	1

Question			Answer			Marks
2(a)		enthalpy change	positive	negative	either positive or negative	2
		electron affinity			✓	
		enthalpy change of atomisation	~			
		enthalpy change of ionisation	✓			
		lattice enthalpy		\checkmark		
2(b)(i)	the second ele	ectron is removed from a (more) positive	ely charged ion			1
2(b)(ii)	ΔH_6 is lattice (energy/enthalpy) AND ΔH_7 is (energy/	enthalpy of) form	ation		1
2(c)	the electron af	ffinity becomes less exothermic/negativ	ve down the Grou	p 17		1
	electron affinit	y depends (mainly) on the electron-nuc	leus distance whi	ch increases dov	vn Group 17	1
2(d)	M1 correct use	e of $\Delta G = \Delta H - T \Delta S$				1
	M2 ∆S = 26.9	$-(32.7 + 102.5) = -108.3 \mathrm{J}\mathrm{K}^{-1}\mathrm{mol}^{-1}\mathrm{O}$	R –0.1083 kJ K ^{−1} n	nol ⁻¹		1
	M3 ∆G = -602	2 – (298 × (–0.1083)) = –570				1
	M4 units: kJ m	iol ⁻¹				1

Question	Answer	Marks
3(a)(i)	$ \begin{array}{l} \textbf{A} - H_2, \ 1 \ atm \\ \textbf{B} - platinum \\ \textbf{C} - 1 \ mol \ dm^{-3} \ H^+ / HC \ l \ etc. \\ \textbf{D} - salt \ bridge / KNO_3 \ etc. \\ \textbf{E} - platinum \\ \textbf{F} - 1 \ mol \ dm^{-3} \ Fe^{2+} \ \textbf{AND} \ 1 \ mol \ dm^{-3} \ Fe^{3+} \end{array} $	3
3(a)(ii)	positive electrode is (Pt) on RHS AND electrons flow clockwise	1
3(b)	cell potential is 0.77 – 0.34 =(+) 0.43 (V)	1
3(c)(i)	electrode potential would become more negative as equilibrium shifts to left/explanation in terms of the Nernst equation	1
3(c)(ii)	$E = -0.41 + (0.059/1)\log[Cr^{3+}]/[Cr^{2+}]$ = -0.41 + 0.059 log 4.0	1
	= -0.37 (V)	1

Question		Answ	er		Marks
4(a)(i)	experiments 1 and 2: doubling [CIO ₂] quadruples the rate, so second order				
	experiments	s 2 and 3: doubling [OH ⁻] doubles the rate, so first	order		
	rate equatio	$m = k[ClO_2]^2[OH^-]$			
4(a)(ii)	from experimination $k = 1.15 \times 1$	ment t 2: $9.34 \times 10^{-4} = k(2.50 \times 10^{-2})^2 \times 1.30 \times 10^{-3}$ 0^3	3		
	units: mol ⁻²	dm ⁶ s ⁻¹			
4(b)(i)		ous catalysts are in different physical state from the te as the reactants	e reactants AND homo	geneous catalysts are in the same	
4(b)(ii)		catalysed reaction	heterogeneous	homogeneous	:
		manufacture of ammonia in the Haber process	\checkmark		
		removal of nitrogen oxides from car exhausts	\checkmark		
		oxidation of sulfur dioxide in the atmosphere		\checkmark	
4(c)(i)		$6H^{+} + 5(CO_{2}H)_{2} \rightarrow 2Mn^{2+} + 10 CO_{2} + 8 H_{2}O_{2}$ (CO ₂ H) ₂ ratio tion			1
4(c)(ii)	first section: second sect	: flatter tion: steeper, before flattening			1 1

www.dynamicpape/ଷାସ୍ଥରେହା7

Question	Answer	Marks
,4(d)(i)	Weather and the second	3
	diagram catalyst lowers E _a for both the forward and reverse reactions so the process requires less energy/can occur at a lower temperature	1 1 1
4(d)(ii)	$K_{p} = (pNH_{3})^{2} / (pN_{2})(pH_{2})^{3}$ 1.45 × 10 ⁻⁵ = $(pNH_{3})^{2} / 20 \times 60 \times 60 \times 60$	1
	<i>p</i> NH ₃ = 7.91	1

Question	Answer	Marks
5(a)(i)	$(CH_3)_3C-Cl/(CH_3)_2C = CH_2$	1
	AlCl ₃ + heat	1
5(a)(ii)	(UV) light	1
5(a)(iii)		1
5(a)(iv)	ammonia/NH ₃	1
	heat in sealed tube/heat under pressure	1
5(b)	$C_{10}H_{13}NH_2 + H_3O^+ \rightleftharpoons C_{10}H_{13}NH_3^+ + H_2O$	1
5(c)	in compound H , the alkyl groups are electron donating/have a positive inductive effect, so it is more basic than NH_3	1
	in phenylamine, the lone pair (of N) is delocalised over the aryl group/benzene ring, so phenylamine is less basic than NH_3	1

Question	Answer	Marks
6(a)(i)	$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}$	1
6(a)(ii)	Ni : [1s ² 2s ² 2p ⁶ 3s ² 3p ⁶] 3d⁸4s² Ni ³⁺ : [1s ² 2s ² 2p ⁶ 3s ² 3p ⁶] 3d⁷	1
6(b)(i)	Image: solated ion complex	1
6(b)(ii)	energy/photon is absorbed in the visible region/light	1
	electron jumps from the lower to the upper energy level/is excited	1
6(b)(iii)	different frequency/wavelength of light are absorbed by the two complexes OR different size of energy gap	1
6(c)	colour of solution: green	1
	explanation: because the solution absorbs most strongly in the blue AND red regions	1
6(d)(i)	$\begin{bmatrix} C_1 \\ H_2OH_{H_{10}} \\ H_2O \end{bmatrix} \begin{bmatrix} C_1 \\ H_2OH_{H_{10}} \\ H_2O \end{bmatrix} \begin{bmatrix} C_1 \\ H_2OH_{H_{10}} \\ H_2O \end{bmatrix}$	2

Question	Answer	Marks
6(d)(ii)	cis-trans/geometrical	1
6(e)(i)		2
6(e)(ii)	optical	1
6(f)(i)	$K_{\text{stab}} = [\text{Ni}(\text{NH}_3)_6^{2+}]/([\text{Ni}(\text{H}_2\text{O})_6^{2+}][\text{NH}_3]^6)$	1
6(f)(ii)	$[Ni(en)_3]^{2^+}$ would be formed because it is much more stable / K_{stab} is much greater OR in the presence of both ligands the overall equilibrium $[Ni(NH_3)_6]^{2^+} \Rightarrow [Ni(H_2O)_6]^{2^+} \Rightarrow [Ni(en)_3]^{2^+}$ would shift right	1
6(f)(iii)	cis-trans isomers identified	1
	two cis isomers identified	1

Question	Answer	Marks
7(a)	$RO \rightarrow O \rightarrow$	1
7(b)(i)	H⁺(aq) + heat	1
7(b)(ii)	hydrolysis	1
7(b)(iii)	CH₃OH	1
7(c)(i)	white precipitate	1
7(c)(ii)	$C_{14}H_{19}O_6N + 3NaOH \rightarrow C_{14}H_{16}O_6NNa_3 + 3H_2O$	2
7(d)(i)	no change/colour remains orange	1
7(d)(ii)	$ \begin{array}{c} $	2 1 1
7(e)(i)	seven	1

Question	Answer	Marks
7(e)(ii)	x , any aryl carbon at $\delta = 130$ H ₂ N O H y at $\delta = 170$	1

Question	Answer	Marks
8(a)	oxidation of –OH/alcohol to C=O/ketone/carbonyl	1
8(b)(i)	dehydration / elimination	1
8(b)(ii)	heat with $A_{l_2}O_3$ OR heat with H_3PO_4/H_2SO_4	1
8(b)(iii)	$HO \rightarrow CO_2H$ $HO \rightarrow OCH_3$ Q R	2
8(c)	phenol	1
	ketone	1

Question	Answer	Marks
9(a)(i)	$n = 100 \times (M+1)/(1.1 \times M) = 100 \times 3.4/(1.1 \times 33.9) = 9.1$	1
	hence 9 carbons atoms	1
9(a)(ii)	C ₉ H ₁₀ O ₂	1
9(a)(iii)	(150 - 119 = 31), hence fragment is CH ₃ O	1
9(b)	V is C=O AND W is C-O	1
9(c)(i)	δ 3.9 is CH or alkyl/CH3 next to oxygen AND δ 7.2–7.9 is CH/aryl hydrogens	1
9(c)(ii)	alkyl H next to C=O AND alkyl H next to aryl ring	1
9(c)(iii)	none of the functional groups in T contains a labile proton / T does not contain –OH or –NH groups.	1
9(d)	CH ₃ O CH ₃ CH ₃ O CH ₃ CH ₃ O	2