

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/22 March 2017

Paper 2 AS Level Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Cambridge International AS/A Level – Markv&colymemicpapers/lecom2017 PUBLISHED

Question				Answer				Marks
1(a)(i)	max O.N.	+1	(+)2	(+)3	(+)5	(+)6	+7	1
1(a)(ii)	(from Na to	Cl) nuclea	ar charge i	ncreases				1
	electrons are in the same shell / have same shielding				1			
	greater/str	onger attra	ction (of e	lectrons to r	nucleus)			1
1(a)(iii)	Mg ²⁺ AND	S ²⁻						1
	ion of Mg/I	Mg ²⁺ has o	ne fewer s	hell (than ic	n of S/S ²⁻))		1
1(b)(i)	$P_4 + 5O_2 \rightarrow P_4O_{10}/2P_2O_5$				1			
1(b)(ii)	• whi • whi		colour (of c	chlorine gas) disappea	rs		2
1(b)(iii)	phosphoric(V) acid				1			
1(c)(i)				ement of (p ed) electror		S		2 1 1
1(c)(ii)	elechar	n melting/b ctrical/ther d/rigid	mal insulat	olimation po tor emperature				2

Cambridge International AS/A Level – Mantvischermamicpapers/lecom2017 PUBLISHED

Question	Answer	Marks
1(c)(iii)	M1 % abundance of fourth isotope = 100 - (0.185 + 0.251 + 88.450) = 11.114	1
	$ \frac{M2}{(0.185 \times 135.907) + (0.251 \times 137.906) + (88.450 \times 139.905) + (11.114 \times RIM)}{100} = 140.116 $	1
	∴ (140.116 × 100) – 12434.35 = 1577.246 = 11.114 × RIM	
	$M3$ $RIM = \frac{1577.246}{11.114} = 141.915$	1

Question	Answer	Marks		
2(a)(i)	bond in which the centres of positive and negative charges do not coincide OR electron distribution is asymmetric/unequal OR two (bonded) atoms are partially charged			
2(a)(ii)	HF has the strongest (permanent) dipole–dipole/van der Waals' (forces)/HF has hydrogen bonding	1		
	requires more energy to overcome (than weaker (permanent) dipole–dipole/ van der Waals' forces between other hydrogen halides)	1		
2(a)(iii)	thermal stability of the hydrogen halides decreases down group (17)	1		
	larger (halogen) atoms/atomic radius (down group) / increased shielding	1		
	bond energies decrease/less energy required to break H–X	1		
2(b)(i)	M1 base is Cl^- AND conjugate acid is HC l OR base is HSO ₄ ⁻ AND conjugate acid is H ₂ SO ₄	1		
	M2 $Cl^-/HSO_4^-/base$ is a proton acceptor OR $HCl/H_2SO_4/(conjugate)$ acid has one more H^+	1		
2(b)(ii)	H ₂ SO ₄ is (too strong) an oxidising agent	1		
	I_2 would be formed instead	1		

Cambridge International AS/A Level – Mantv&colymemicpapers/lecom2017 PUBLISHED

Question	Answer					
2(c)(i)	2(c)(i) $\Delta_r H = \Delta_r H\{\text{products}\} - \Delta_r H\{\text{reactants}\} = 2 \times (-242) - 4 \times (-92)$ $= -116 \text{ (sign AND answer)}$					1
						1
2(c)(ii)	2(c)(ii) heterogeneous (catalyst)					1
	provides an alternative reaction pathway of lower activation energy					
2(c)(iii)	reaction is exoth	ermic				1
	(increased temperature) shifts equilibrium to the left AND decreases yield of products (C l_2 and/or H ₂ O)/less product formed					
2(c)(iv)		HC1	O ₂	Cl ₂	H ₂ O	3
	initial number of moles	1.60	0.500	0	0	
	M1 eqm number of moles	1.60 – 2 × 0.600 = 0.400	$0.500 - \frac{1}{2} \times 0.600 = 0.200$	0.600	0.600	
	M2 mole fraction			0.600 1.80		
	M3 partial pressure			$\frac{0.600}{1.80} \times p_{tot} = 5.00 \times 10^4$		
2(c)(v)	$K_{\rm p} = \frac{\left(3.6 \times 10^4\right)^2 \times \left(3.6 \times 10^4\right)^2}{\left(4.8 \times 10^4\right)^4 \times 3.0 \times 10^4} = 1.05 \times 10^{-5}$					1
	units = Pa ⁻¹					1
2(c)(vi)	$K_{\rm p}$ would not cha	ange				1

Question	Answer	Marks
3(a)(i)		1
3(a)(ii)	reaction $1 = HCl(aq)$	1
	reaction 2 = (conc.) NaOH/KOH AND ethanol	1

Cambridge International AS/A Level – Mantv&cbymamicpapers/lecom2017 PUBLISHED

Question	Answer	Marks
3(a)(iii)	$\begin{array}{c} \begin{array}{c} H & C_2H_5 \\ \hline -C & -C & -C \\ H & H \end{array} \\ \hline C -C \text{ backbone with dangling bonds} \\ rest of structure \end{array}$	2 1 1
3(b)	CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ CH ₃	3 1 1 1
3(c)(i)	(electrophilic) addition	1
3(c)(ii)	S has CH ₃ CHOH OR methyl/CH ₃ group next to CHOH	1
3(c)(iii)	positive inductive effect of more alkyl groups/more alkyl groups donate electron density	1
	secondary carbocation/secondary intermediate is more stable (than primary)	1
3(c)(iv)	S =	1
	T = HO	1
		1
3(c)(v)	$CH_{3}CHOHCH_{2}CH_{3} + [O] \rightarrow CH_{3}COCH_{2}CH_{3} + H_{2}O$	1
3(d)(i)	methyl pentanoate	1
3(d)(ii)	(compound \mathbf{V} is) spectrum X	1
	spectra X and Z show a C=O (stretch) at 1730 (cm ⁻¹)	1
	spectra Y and Z show O–H (stretches) above 2500 (cm ⁻¹)	
	V has a C=O (bond) and no O–H (bond)	1