CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the March 2016 series

9701 CHEMISTRY

9701/33

Paper 3 (Advanced Practical Skills), maximum raw mark 40

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2016 series for most Cambridge IGCSE® and Cambridge International A and AS Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	33

question		indicative ma	terial		mark	total
1 (a)	I All thermometer reading Do not award if mass of I		FA 2 recorded.		1	[4]
	II All temperatures record	ded to 0.5 °C.			1	
	Award III and IV if within	ranges given of	supervisor's val	ue.	2	
	supervisor's ΔT/°C	III	IV			
	≥ 46.0	± 5.0	± 2.5			
	36.0–45.5	± 4.0	± 2.0			
	26.0–35.5	± 3.0	± 1.5			
	16.0–25.5	± 2.0	± 1.0			
	6.0–15.5	± 1.0	± 0.5			
	< 6.0	± 0.5	_			
(b)	I Axes labelled with units of each axis including 10				1	[4]
	II All recorded points plo	tted (minimum 9).		1	
	 III Appropriate lines of be best fit lines must Points not on the fit line and any po 	be or a smooth line must be bal	anced on either		1	
	IV Lines extrapolated and graph.	d correct value (v	within 0.5°C) of	ΔT read from	1	
(c) (i)	Correctly calculates Q =	$25 \times 4.2 \times \Delta T$ from	om (b) .		1	[3]
(ii)	Correct expression for variable $= \frac{-(\mathbf{c})(\mathbf{i}) \times 24.3}{\text{mass in } (\mathbf{a}) \times 1000} \text{ (ign}$		change		1	
	Negative sign and both a rounding to 1 sig. fig. dur	answers recorde			1	
(d)	Incorrect, as the acid was	s in excess alrea	ıdy.		1	[1]
(e)	Any one from: use lid or use specton or convection or con	iduction); urette for FA 1 to ited (owtte); urnings/powder while magnesiu	o reduce % erro so reaction com m ribbon is still i	r/as more nplete sooner as reacting;	1	[1]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	33

question		indicative material	mark	total
2	(a)	I Initial and final burette readings and volume added recorded for rough titre and accurate titre details tabulated.	1	[7]
		 II Initial and final burette readings recorded and volume of FA 4 added recorded for each accurate titration. All headings and units correct for accurate titrations: initial/final (burette) reading/volume or reading/volume at start/finish volume/FA 4 added/used or titre (cm³) or/cm³ or in cm³ or cm³ by every entry. 	1	
		III All accurate burette readings are recorded to the nearest 0.05 cm ³ .	1	
		IV Has two uncorrected, accurate titres within 0.1 cm ³ .	1	
		V, VI and VII Award V, VI and VII for $\delta \leqslant 0.20 \text{cm}^3$ Award V and VI for $0.20 \text{cm}^3 < \delta \leqslant 0.30 \text{cm}^3$ Award V for $0.30 \text{cm}^3 < \delta \leqslant 0.50 \text{cm}^3$		
	(b)	Mean titre correctly calculated from clearly selected values.	1	[1]
		 Candidates must average two (or more) titres where the total spread is ≤ 0.20 cm³. Working must be shown or ticks must be put next to the two (or more) accurate readings selected. The mean should normally be quoted to 2 d.p. rounded to the nearest 0.01. 		
		Note: the candidate's mean will sometimes be marked as correct even if it is different from the mean calculated by the examiner for the purpose of assessing accuracy.		
	(c)(i)(ii)	Correctly calculates $\frac{0.100 \times (b)}{1000}$	1	[5]
		and (ii) = (i)		
	(iii)	Correct expression $\frac{(c)(ii) \times 1000 \times 10}{25}$	1	
	(iv)	mol Mg = mass in $1(a)/24.3$ and mol HC l = $(c)(iii) \times 25/1000$	1	
		mol HC $l > 2 \times$ mol Mg (owtte) so the statement is correct. Allow ecf from incorrect (iii).	1	
		Final answers (i), (ii) and (iii) to 3 or 4 sig. fig. and no rounding errors.	1	

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – March 2016	9701	33

question	indicative material	mark	total
(d)	Correct expression $\frac{0.1 \times 100}{\text{(b)}}$ and answer to minimum 2 sig. fig./correct	1	[1]
	answer to minimum 2 sig.fig. and FA 3 (is measured more accurately). Allow ecf from (b) > 41.67 cm³ then FA 4 (is measured more accurately).		

test	observations		
	FA 5	FA 6	
NaOH	no reaction/no change/no ppt	white ppt, soluble in excess	
NH ₃	no reaction/no change/no ppt	white ppt, insoluble in excess	
HC <i>l</i> (warm)	blue solution brown gas/gas turning brown/ gas turns blue litmus red/bleaches	no reaction/no change	
H ⁺ /MnO ₄ ⁻	decolourises / purple to colourless or (solution) stays colourless	stays purple/pink or changes to purple/pink	
Ba ²⁺ /HC <i>l</i>	no reaction/no change/no ppt	white ppt, insoluble in HC1	

question	indicative material	mark	total
	FA 5 is NaNO ₂ ; FA 6 is A l_2 (SO ₄) ₃ ; FA 7 is Na ₂ SO ₃ (Na ₂ S ₂ O ₅)		
3 (a)	Observations fully correct for both FA 5 and FA6 for NaOH.	1	[8]
	Observations fully correct for both FA 5 and FA6 for NH ₃ .	1	
	Observation of blue solution or brown gas with FA 5 and no reaction with FA 6 for HC <i>l</i> .		
	Observations fully correct for both FA 5 and FA6 for H ⁺ /MnO ₄ ⁻ .	1	
	Observations fully correct for both FA 5 and FA6 for Ba ²⁺ /HC <i>l</i> .		
	Cations: FA 5 unknown and FA 6 A l^{3+} /aluminium Anions: FA 5 NO ₂ -/nitrite FA 6 SO ₄ ²⁻ /sulfate	1 1 1	

Page 5	Mark Scheme	Sylla	bus	Paper
	Cambridge International AS/A Level – March 2016	97	01	33

question	indicative material	mark	total
(b) (i)	(Warm with) Al and NaOH and test gas with (damp) red litmus paper.	1	[5]
	No reaction and not nitrate/N/same element as FA 5.	1	
(ii)	BaCl ₂ /Ba(NO ₃) ₂ and HCl/HNO ₃ or H ⁺ /KMnO ₄ /acidified potassium manganate(VII) or any named acid, (warm) and test gas with H ⁺ /KMnO ₄ . Ba ²⁺ and acid: white ppt, soluble in acid or H ⁺ /MnO ₄ -: solution decolourises/purple to colourless or acid and test gas with H ⁺ /KMnO ₄ : gas (evolved with acid) which decolourises H ⁺ /MnO ₄ - (paper).	1	
	FA 7 contains sulfite / SO ₃ ² -	1	