CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International Advanced Subsidiary and Advanced Level

MARK SCHEME for the May/June 2015 series

9700 BIOLOGY

9700/22

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

www.dynamicpapers.			
Page 2	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

Mark scheme abbreviations

; / R	separates marking points alternative answers for the same point reject
A R	accept (for answers correctly cued by the equation, or by extra guidance) reject
A AW <u>underline</u>	accept (for answers correctly cued by the question, or by extra guidance alternative wording (where responses vary more than usual) actual word given must be used by candidate (grammatical variants accepted)
max	indicates the maximum number of marks that can be given
ora	or reverse argument
mp ecf	marking point (with relevant number) error carried forward
	ignore
AVP	alternative valid point

					www.dynan	nicpapers	.com
Ρ	age :	3	-	Mark Scheme		Syllabus	Paper
			Cambridge Interna	tional AS/A Level –	May/June 2015	9700	22
1	(a)	Α	right ventricle;	A r. ventricle	R RV		
		В	vena cava;	A vena cavae			
		I R	superior/upper/inferior if other terms used	/lower/posterior			
		С	atrioventricular node;	A AVN			
		D	coronary arteries ;	A coronary arter I coronary vesse		aries	
		Е	bicuspid/left atrioventrie	cular/mitral (valve);			[5]
							[Total: 5]
2	(a)	1	cilia, qualified; e.g. al R cilia	killed R hairs for		mages cilia	
		2	ref. to presence of, scar	tissue/scarring ; B (are scarred (idea is	-	-	ective
			note idea of scar tissue	,	ated epithelium = 2 ma	arks	
		3	idea of affecting, coordi A cilia	nated movement/sy paralysed	nchronous rhythm, (of	cilia);	
			A ecf	if 'hairs' instead of ci			
		4 5	mucus, not moved (effe idea that, bacteria/ <i>B. p</i>			e (in airways	;)/are
			trapped in mucus		dium for nother one / /		·
			A muc	cus, good growth me	dium for pathogens / A	400	[max 3]
	(b)	mu	cous gland ; A muc	cous glands			[1]
	(c)		nother mode of transmiss rks for this part-question			transmissio	ר) = 0
		1	aerosol/droplet, infection	on_;			
		2 3	only need to have one o infected/AW, person, c uninfected/AW, person	oughs/breathes/spi	ts/talks/sneezes;	3	
		2/:	3 allow one mark if mps 2	and 3 given with no	reference to, infected	/uninfected	
		4	organism/pathogen/ba	icteria <i>/ B. pertussis</i> , i	n, airborne droplets/d	Iroplets in air	,

organism/pathogen/bacteria/*B. pertussis*, in, airborne droplets/droplets in air ; A without 'airborne' or 'in air' *if mp 2 gained* [max 2]

U - 1			Cambridge International AS/A Level – May/June 2015	9700	22
(d)	(i)	1	DNA/gene/ <i>MUC5AC</i> , unwinds/AW ; I unzips		
		2	H-bonds break between, (complementary) bases/base pairs/s	strands;	
			l unzips		
		3	one / a, strand, acts as template / (complementary) copied ;		
			I ref. to, sense/coding and antisense/non coding		
		4	ref. to (involvement of) <u>RNA</u> polymerase ;		
			I ref. to direction of, movement/strand formation		
		5	(free) complementary <u>RNA</u> nucleotides added ;		
			A described in terms of correct base-pairs (C with G and A	A with U mir	າimum)
		6	step-by-step/sequentially/AW;		
		7	sugar phosphate backbone sealed/phosphodiester bonds form	ned ;	
			A sugar phosphate backbone formed		
		8	(product is) messenger RNA/mRNA ; A primary transcript		
		9	AVP; e.g. transcription factors required to initiate transcription	ו	
			RNA polymerase binds to promoter (sequence)		
			helicase unwinds		
			ref. to activated (RNA) nucleotides		
			ref. to proof reading		
			(transcription ends at) transcription terminator		[max 4]
	/::\	<u></u>	lai (body/complex/concretue)		
	(ii)	GO	lgi (body/complex/apparatus) ; A RER/rough ER/rough endoplasmic reticulum		
		on	e of		
		2	transport/movement, to cell (surface) membrane (from Golgi)		
		2	A through cytoplasm (for Golgi or RER)	,	
			A transport to Golgi <i>if RER given in mp1</i>		
		3	ref. to bulk transport, across cytoplasm/to cell surface membra	ane .	
		4	ref. large size and difficulty of movement across, cell/cell surfa		ane .
		5	it, functions extracellularly/is released to the outside of the cel		
		•	I ref. to exocytosis as it is in the question		[max 2]
			····· ··· ····························		[]
(e)	1	sho	ortness of breath/dyspnea/difficulty breathing/restriction of airfl	ow;	
			A rapid breathing R heavy breathing		
	2	chr	onic/persistent/AW, cough/coughing ; I cough, blood/mucus		
	_		A constant coughing A smoker's cough		
	3		est tightness ; A chest pain R heart pa	ain	
	4		eezing;		
	5		gue/weakness;		
	6		iculty, when exercising/with physical activity/with mobility;		
	7		re prone to/frequent, chest/respiratory/named, infections;		
	8		rel (shaped) chest ;		
	9		anosis (blue, face/fingers)		
	10	AV	P; e.g. weight loss/anorexia		
			swollen, ankles/feet		[
	not	exc	ess mucus as this is in the question		[max 4]

Mark Scheme

Page 4

www.dynamicpapers.com

Syllabus Paper

[Total: 16]

© Cambridge International Examinations 2015

www.dynamicpapers.com

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

- 3 (a) same, water potential /Ψ(inside + outside)/no water potential gradient ;
 A same solute potential I osmotic potential
 - (so) no, net/overall, movement of water (molecules) ; A osmosis does not occur

[2]

(b) for two marks match correct plasma component and, mechanism/membrane component if no mechanism given

plasma component ;	mechanism ;	membrane component ;
oxygen carbon dioxide steroids / steroid hormones	(passive) diffusion A movement from high to low concentration	(phospho)lipid bilayer/ hydrophobic core (of membrane)
glucose amino acid(s) named amino acid mineral/inorganic, ions named ion e.g. sodium ions/Na ⁺ , magnesium ions/Mg ²⁺ chloride ions/C <i>T</i> , hydrogen ions hydrogen carbonate ions/HCO ₃ - phosphate ions/HPO ₄ ²⁻ potassium ions (K ⁺)	facilitated diffusion ; A active transport A cotransport	transport(er)/carrier/ integral/intrinsic/ transmembrane, protein ; A channel protein for facilitated diffusion A pump protein for active transport

A urea, with any of the three mechanisms and relevant membrane component to match the mechanism stated [3]

(c) (x) 1000 ;; A (x) 947 / 947.4 or 1053/1052.6 if units given = one mark only

if incorrect allow one mark for correct length measured 9/9.5/10 mm and knowledge of formula is correct (magnification = image length/actual length – this can also be seen by workings e.g. $9.5 \text{ mm} \div 9.5 \mu \text{m}$) but incorrect conversion factor used for final calculation [2]

- (d) feature = one mark, with appropriate explanation = one mark
 - F red blood cells/haemoglobin, close to body cells;
 - F (capillary) endothelium/capillary wall, one cell thick/thin; A epithelium
 - E short distance/AW (for oxygen to move to cells);
 - F ref. to, diameter/size, red blood cell and capillary (lumen) similar;
 - E slows down flow (to allow sufficient oxygen to move out)/short distance (for oxygen to move to cells);

[max 2]

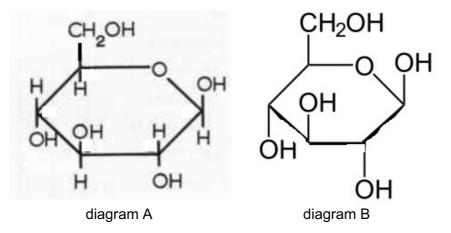
www.dvnamicpapers.com

Page 6	Mark Scheme	Syllab	us Paper
	Cambridge International AS/A Level – May/June 2015	9700	22

(e) no/fewer, gaps/fenestrations/pores, in endothelium/capillary wall;
 A spaces
 ref. tight junctions between (endothelial) cells; A epithelial cells

idea that cells wrap round/fewer cells make up capillary wall, so reduces

(endothelial) cell-cell contact ;


idea of layer around capillary / basement membrane, impermeable;

[max 1]

[Total: 10]

4 (a) either diagram A or B below (or more detailed – e.g. all carbons and all bonds shown in diagram A) ;;
 A CH₃0 for CH₂OH

I incorrectly numbered carbons

if incorrect (e.g. If one or more H missing from the ring in diagram A or <i>if an H added to diagram B ring) allow one mark if:

- hexose ring with oxygen shown in correct position and
- CH₂OH group in correct position <u>and</u>

OH groups of ring in correct position.

[2]

_]. nomi

	www.dynamicpapers.com					
Page 7		Mark Scheme	Syllabus	Paper		
		Cambridge International AS/A Level – May/June 2015	9700	22		
(b) (i)	acc if o	Sept <u>T. maritima</u> or T and <u>A.tumefaciens</u> or A throughout for the sept T if stated as B (as long as A is clearly mentioned) nly A or T stated, look for comparative phrase npare optimum temperatures optimum temperature, A lower (than T)/T higher (than A); A maximum activity A is at a lower temperature 40°C(A) v 85°C(T) / A lower by 45°C; one difference in shape of curve before or after optimum; e.g. after optimum, T does not have the less steep decreas steep decrease (unlike A) before optimum, steepest increase for A is at the lower temperature	ise after the	initial		
	4	 compare activity below and above 55 °C below 55 °C, A has a high<u>er</u> activity / above 55 °C A has a lower ora A has a higher activity at low(er) temperatures <u>and</u> a lower activity at low and a lower activity at low and a lower activity at low at		, .		
	6 7	compare temperature ranges of activity temperature range for activity is greater for A ; ora (A) spans 80 °C v (T) spans 65 °C ; A (A) 10–90 °C v (T) 30–9	5°C			
	8 9	<pre>compare L for both A has a lower, L/lowest temperature for (detectable) activity c L is 20 °C lower for A ; A 10 °C (A) v 30 °C (T) ; (at L), A (relative) activity = 35%, T = 10% ;</pre>	or ora			
		<pre>compare H for both T has a higher, H/highest temperature for detectable activity o H is 5 °C higher for T; A 95° (T) v 90 °C (A); (at H) (relative) activity = 4%, T = 60%;</pre>	or ora			
	if m	np 10 data given to support mp 1, then CON = no marks for mp	1 or 10	[max 4]		
(ii)	1	 primary structure, dictates, folding of the polypeptide chain/ten A idea that differences in primary structure leads to differences secondary/tertiary, structure A in terms of folding to give the active site similarity 		re;		
	2 3	same/(very) similar, (shape of) active site ; active site (shape) is complementary to/AW, substrate/cellob A ES complex forms differences	iose ; R mat	ches		
	4 5	differences in, side-chain/R-group, interactions/AW; qualified; e.g. differences in, numbers/types, of bonds differences in bonding to give different stabiliti R different bonds without further qualification R peptide bond	es			
	6 7	 suggestion for thermal stability of T; e.g. more bonds/more or suggestion of how active site may work in different ways; e.g. at lower temperatures, T induced fit mechanism may mea mould fully round substrate 				
				Total: 101		

www.dynam			nicpapers.com	
Page 8	Mark Scheme Syllabus Paper			
	Cambridge International AS/A Level – May/June 2015	9700	22	

5 (a)

A reverse wording for both
mark verticallv/one mark each correct column

mark vertically/one mark each correct column					
description of event	outcome for the individual	production of memory cells/ yes or no	precise type of immunity acquired by individual		
individual P is injected with a live, weakened disease-causing organism	individual P does not become ill from the disease and has long-lasting protection from the disease	yes	artificial active		
individual Q is exposed to a disease-causing organism and is immediately injected with a specific antibody	individual Q does not become ill from the disease but suffers from the disease a year later	no	artificial passive		

- (b) bone marrow ; A stem cells/myelocytes I white blood cell
- [1]
- (c) (i) 1 healthy body cells, (recognised as) self/have self-antigens; A non-foreign
 - 2 cancer(ous)/tumour, cells, (recognised as) non-self/have non-self antigens; A foreign
 - 3 idea that changes occur to structure of cell surface membrane of, cancer(ous)/ tumour, cells ;
 - 4 phagocytes have receptors for, non-self/foreign, antigens or phagocytes have receptors for antibody complexed to non-self/foreign antigens;

[max 2]

[2]

Page 9	www.dyna Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – May/June 2015	9700	22
(ii)	1 uncontrolled/AW, mitosis/(mitotic) cell division/cell replicati	on/cell cvcle	
()	either		,
	2 one example of a change occurring in a healthy cell		
	e.g. proto-oncogene to oncogene		
	mutation of/switching of, tumour suppressor gene uncontrolled growth		
	increase in growth proteins		
	shorter interphase (of cell cycle)		
	(rapid) DNA replication		
	cells do not respond to signals (from other cells) or		
	further detail of tumour formation ;		
	e.g. cells immortal/no apoptosis/no programmed cell d		
	no contact inhibition/cells continue to grow when th	ey contact oth	ner cells
	cell cycle checkpoints not controlled abnormal/AW, mass of cells formed		
	undifferentiated/unspecialised, cells/tissue/mass		
	cells do not function (as tissue of origin)		[
			IT a f a la
			[Total:
(a) (i)	(a) habitat ;		
	(a) population ;		_
	producers/organisms;		[
(ii)	(a) niche ;		
	(an) ecosystem ;		[
(b) (i)	energy losses from		
	1 reflection (from leaf surface);		
	2 idea that some light, passes through (leaf)/misses chloropla	sts/strikes	
	non-photosynthetic tissue ;		
	A suggestion that cell walls may not allow all of light through		
	 a heating plant ; I lost as heat to surroundings A converted to evaporation ; A transpiration 	heat	
	5 not all light (reaching chlorophyll) is, the right wavelength (for	r photosvnthe	sis)/AW
	absorbed by chlorophyll ;		,
	A idea that only a proportion of light energy is useable		
	A absorbed and, lost as phosphorescence/lost as luminesc		ed
	6 ref. to photosynthetic process inefficient ; A loss of heat ene photosynthesis	igy <u>auring</u>	
	7,8 AVP ;; e.g. ref. to photorespiration		

age 10	Mark S	www.dyna	Syllabus	Paper	
		S/A Level – May/June 2015	9700	22	
(ii)	 increased production of / more, biomass / plant matter / named (e.g. carbohydrate cellulose / starch / oils); R more plants I more crop I food (so) more energy / more energy stores; A more chemical energy produced A higher energy A suggestion that high PE crop may be more energy dense more crop / greater yield, per unit, area / volume / time; A each year idea of (comparatively) less space required (for growing); ref. to supplying increasing demand for, food / fuel; more, profit (for farmers) / economic / AW; I cheaper AVP; e.g. efficient use of carbon dioxide 			ohydrate / [max :	
(iii)	credit all valid answers – this list is not exhaustive				
	e.g. compound	e.g. function of compound			
	amino acids	production of proteins (for cell g A provide energy/for respi			
	proteins	cell division/mitosis/increase in cell number/ increase in, biomass or yield/(cell) membranes ; A reproduction A cell cycle A (tissue) repair A provide energy/for respiration			
	enzymes	synthesis of, macromolecules or organic molecules/ anabolic reactions/for photosynthesis/for respiration ; [max A named molecules e.g. carbohydrates/amino acids/proteins/lipids/nucleic acids			
	(organic/nitrogenous) bases	component/synthesis of, nucle component of, DNA/RNA/nucl			
	nucleotides	component/synthesis of, DNA	RNA;		
	DNA	ref. genes/genetic material/co genetic information, (for protein		on/	
	RNA	ref. transcription/translation/pr		is;	
	(some) phospholipids	(for cell) membranes ; R lipids			
	ATP	synthesis/anabolic reactions/a translocation/described ; A provide energy for reacti	ed;		
	chlorophyll	photosynthesis/light (depender	nt) stage ;		
	NADP	(in) photosynthesis/light (depe	dependent) stage ;		
	NAD	(involved in) respiration;			
	FAD	(involved in) respiration;	;		
	auxin	growth hormone/cell elongation	on/cell division ;		
				,	