UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9700 BIOLOGY

9700/05

Paper 5 (Planning, Analysis and Evaluation), maximum raw mark 30

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

Page 2			Mark Scheme	Syllabus	Paper
			GCE A/AS LEVEL – May/June 2008	9700	05
(a)	(i)	inde rejec	pendent variable – amount/percentage/cover/of Fucus t number	spiralis/seawee	d/algae;
		depe igno	endent variable – numbers of <i>Littorina littorea</i> /mollusc; re mean		[1
	(ii)	two igno marł	of: re in all cases reference to means/climate/same beach ‹ the first answer on each line	n/weather	
		ref. t	o size/use of same quadrat;		
		ref. t	o line/transect parallel to sea;		
		ref. t igno	o repeat lines/transects at same distance from the sea re ref. to experiment/it measurement/repeated	a;	
		ref. t ref. t	o 20 sets/lots of data (per transect); o regular systematic placement (of quadrats);		
		allov	v description/every metre intervals		[2
(b)	(i)	ansv one sam	vers must relate to specific data in the table of: ples at 6 and 7/around the same value, have (3) mollu	scs;	
		sam	ple at 16/0 cover, has molluscs;		
		perc	entage cover too high, should have molluscs;		
		does this l	not fit a general correlation/does not follow trend, exp nas 0 molluscs;	ect some mollus	scs/
		allov	v ref. to mean values rounded down to zero;		[1
	(ii)	<i>x</i> -ax <i>y</i> -ax	is – mean percentage/amount of <i>Fucus spiralis</i> /%; all is – mean number of <i>Littorina littorea</i> ; allow mollusc	ow seaweed/alg	jae [1

(iii)

(iv) Route 1

there may be no relationship/data is scattered; does not support the hypothesis as there is no proportion/not a straight line relationship between the two species;

Route 2

there is a slight (positive)/partial correlation; limited support for hypothesis as there a correlation/proportion at higher percentage cover/data quoted;

allow: Route 3

described pattern e.g. as steps/increases unevenly;

not supporting hypothesis as increase in cover is not necessarily followed by increase in *Littorina*; [2]

www.uynamicpapers.com

Page 3	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9700	05

(v) one of:

a suitable abiotic/position on beach factor;

(e.g. temperature/heat, exposure, desiccation/light/rocks/rock pools/ distance from sea/wave action/pollution)

a suitable biotic factor;

(e.g. predation/competition other species for food source/human activities AW)

[Total: 8]

[1]

2 (a) (i) Look for what the candidate is going to do, not just that the variables are listed. reference to eight of:

ref. to varying the independent variable:

- 1. suitable method of providing different concentrations of carbon dioxide; (e.g.(sodium) hydrogen carbonate/calcium carbonate/baking powder/ gas cylinder/bubbler) allow HO_3^-
- 2. at least 5 concentrations of carbon dioxide;
- 3. ref. to measuring/maintaining each carbon dioxide concentration with the probe;

ref. to measuring dependent variable:

4. amount of gas produced in known time/time to collect a known amount of gas;

ref. to controlling any 2 of the key variables:

- 5. method of standardising pond weed; (e.g. mass/length/same piece/same number of leaves/same species)
- method of maintaining constant light intensity;
 (e.g. light fixed distance from plant) no fixed time limit on light exposure
- method of maintaining temperature; (e.g. water bath/insulator) allow – air conditioned room
 method of standardising water;
- (e.g. same volume/removing gases by boiling)

ref. to any 2 procedures of using apparatus:

- 9. use of pond weed and syringe;
 - (e.g. cutting pond weed and inserting into syringe under water/solution)
- 10. time for equilibration of pond weed in different carbon dioxide concentrations;
- 11. working in a dark room/green illumination/enclosing apparatus in a box to eliminate any other light sources;
- 12. ref. to 3 sets of measurements and a mean/average

ref. to any 1 safety issue and precaution:

- 13. idea of a low risk experiment;
- 14. ref. to potential risks;

(e.g. electric shocks faulty equipment/wet wiring/handling chemicals/cutting pond weed and sensible precautions)

		WWW.	dynamicpap	ers.com
Page 4	1	Mark Scheme	Syllabus	Paper
		GCE A/AS LEVEL – May/June 2008	9700	05
(ii)	grap of cu (pho conc	h axes correct orientation and labelled and shape rve correct; tosynthesis) rate is proportional to carbon dioxide entration/carbon dioxide is limiting at low concentratio	Rate of photosynthe n;	sis
	until	another factor becomes limiting (at high concentration	ı.);	Concentration carbon dioxic
(b) (i)	volui initia	ne of oxygen obtained by subtracting reading after a I reading of syringe;	adding oxygen	absorbent from
	rate	of photosynthesis = $\frac{\text{mass/volume of oxygen}(\text{cm}^3)}{\text{time}(\text{mins})};$	reject amount	
	allow	<i>i</i> fixed volume oxygen, rate is 1 divided by time		[2]
(ii)	any o wate unus plant air m allow	one of: r used to make solutions contains air; allow nitrog ed carbon dioxide gas from the solution; c contains air which may be given off with oxygen; ay remain in syringe when setting up the apparatus; r respiration of microorganisms produces carbon dioxi	en allow nitrogen de;	
	rejec	t plants respire		[1]
				[Total: 14]
(a) (i)	ref. t	o measuring (tubules/lumens/sections) with eyepiece	graticules;	
	ref. t e.g.; allow	o using stage micrometer and eyepiece graticule; calculating the number of eyepiece graticule units per comula:	stage microme	eter unit
	num	ber of stage micrometer divisions \times value of 1 microme mber of eyepiece graticule units	ter division	[2]
(ii)	the sthat	spread of data around the mean/(data with) a narrow with a wide spread;	v spread is mo	re reliable thar
	allov data	v with reference to data in table, e.g. tubule diameter standard deviation is less	· is more reliab	le as spread o [1]
		figent difference/not due to change AW/		

\^/\^/\	dyna	michaners	com
vv vv vv .	.uviia		

Page 5	Mark Scheme	Syllabus	Paper
	GCE A/AS LEVEL – May/June 2008	9700	05

- (b) mark together for maximum marks,
 - look for one statement that supports validity or reliability
 - one other statement that either supports or does not support validity or reliability
 - These can be awarded in the first part of the question.
 - one statement that does not support either validity or reliability

This can only be awarded in the last part of the answer.

support for reliability:

- 1. sufficient measurements made;
- 2. two dimensions measured/reference to standard deviation;
- 3. all available types of tubule measured;

allow reverse arguments for 1 and 2 as marks for against reliability/validity

support for validity:

4. ref. to *t*-test; allow ecf from (b)(iii) reject if linked to reliability

against either reliability or validity:

- 5. size of the columnar cells was not measured;
- 6. the brush border was not measured /not visible;
- 7. ref. idea of difficulties in measuring diameter accurately from sections;
- 8. ref. to difficulty in recognising types of tubules;
- 9. (student) assumes that the difference in diameter of the total wall is entirely due to columnar cells;

[Total: 8]

[3]