UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the May/June 2008 question paper

9700 BIOLOGY

9700/04

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

					dynamicpape	ers.com
	Pa	ge 2	2	Mark Scheme	Syllabus	Paper
				GCE A/AS LEVEL – May/June 2008	9700	04
1	(a)	hig	her p	opulation (growth), higher (rate of) deforestation / ora ;		
		ref.	2 na	med countries (or letters) and paired figs ;		
		ref.	Vieti	nam (not fitting trend);		[2 max]
	(b)	(i)	1	ref. variety of, species / organisms / plants / animals;		
	. ,	.,	2	variation within species / AW ;		
			3	genetic diversity between species / AW ;		[2 max]
		(ii)	eco	nomic		
		()	1	(some, species / plants / animals may have) uses in th	ne future :	
			2	medical uses / example ;	io lataro ,	
			3	resource material ; e.g. wood for building / fibres for cl	othes	
			4	food (for humans) / agriculture ;		
			5	tourism / example ;		
			6	ref. maintain gene pool / genetic diversity ;		
			7	prevention of natural disasters ;		
			8	AVP; e.g. ref. biological control (predators / parasites	reduce pest pop	ulations)
						[4 max]
						[Total: 8]
_		_				
2	(a)			acreatic) duct ; A capillary		
		B -	- islet	of Langerhans / α and β cells ;		[2]
	(b)	αα	ells /	β cells / islets / B , secrete, hormones / glucagon / insu	lin ;	
		into	o the		[2]	
	(c)	1	incr	eases permeability of membrane to glucose / increases	s alucose uptake	:
	(-)	2		eases respiration of glucose ;	- <u>-</u>	,
		3		reases), conversion of glucose to glycogen / glycogen	esis :	
		4	•	reases) protein / fat, synthesis ;	,	[2 max]
			(····· / [······ ···, ·] ····· · · · ·		[]
	(d)	1	it is	identical to human insulin / ora ;		
		2	wor	ks better than non-human insulin / more rapid response	е;	
		3	no /	fewer, rejection problems / side effects / allergic reacti	ons;	
		4	ref.	to ethical / moral / religious, issues ;		
		5	che	aper to produce in large volume / unlimited availability	; R cheap to p	roduce
		6	less	risk of, transmitting disease / infection ;		
		7		d for people who have developed intolerance / allergic <u>nimal</u> insulin ;	reactions / immu	ine responses [2 max]

Page 3			Mark Scheme	dynamicpape Syllabus	Paper			
	900	,	GCE A/AS LEVEL – May/June 2008	9700	04			
(a)	(i)	1	anthers, versatile / loosely attached / attached at one	ooint (to filament	s):			
()	(-)	2	anthers / stamens / tassels / androecium, on long filan	•				
		3	anthers / stamens / tassels / androecium, above leave	-	(
		4	stigmas / silks, hang out (of flower);	- ,				
		5	stigmas, large surface area / hairy / feathery / branche	d, (to catch polle	n); [3 ma			
	/::)							
	(ii)	1	antages genetic variation / more diverse gene pool / increased	gene pool;				
		2	increased heterozygosity;					
		3	less likely that harmful recessive alleles will be expres	sed;				
		4	hybrid vigour / decreased inbreeding depression ;					
		5	ability to respond to changing conditions / named example.					
			e.g. different environments / pests / disease / increase	ed survival of offs	pring [3 ma			
(b)	(i)	1	cut <u>DNA</u> (into fragments) ;					
()	(.)	2	by, restriction enzymes / named enzyme ;					
		-3	place on (agarose) gel;					
		4	apply, current / p.d. / electricity ;					
		5	fragments travel towards anode ;					
		6	short fragments travel, further / faster, than long ones	; A mass of fra	agments			
		7	visualise DNA with UV light / other means of visualisat		0			
		8	AVP ; e.g. Southern blotting / described		[4 ma			
	(ii)	1	change to, primary structure / secondary structure / shape ;	tertiary structure	/ folding / 3			
		2	protein / enzyme, cannot carry out its normal function	:				
		3	(could be an enzyme) that is essential for a metabolic					
		4	(could) control the expression of another gene / series		[2 ma			
	(iii)	1	(only) one base / base pair / triplet, needs to chamaize);	ange (for teosint	e to becor			
		2	idea that this could occur in a natural population of tec	sinte / mutation :				
		3	variant, looks different / easy to spot ;					
		4	early farmers could have selected it to breed from ;					
		5	no need for complex breeding programme ;		[3 ma			
					[Total: 1			

Pa	ige 4	1	Mark Scheme	dynamicpape Syllabus	Paper
	.go	•	GCE A/AS LEVEL – May/June 2008	9700	04
(a)	1		olarisation / impulses / action potential, opens calcium i creased permeability to calcium ions	on channels ;	
	2	in p	resynaptic <u>membrane</u> ;		
	3	calc	ium ions enter, synaptic knob / through presynaptic me	mbrane ;	
	4	vesi	cles of, acetylcholine / neurotransmitter;		
	5	fuse	e with presynaptic membrane;		
	6	emp	oty contents into synaptic cleft / exocytosis ;		[3 max
(b)	(i)	1	fluorescence, more / higher, in sperm from wild type m	ice / ora ;	
		2	comparative figures ; e.g. 170 v 10 and 400 v 10		
		3	mutant sperm do not have ${f P}$ / ora ;		
		4	so cannot take up calcium ions / ora ;		[3 max
	(ii)	1	fluorescence of flagella (of wild-type sperm) higher that	n heads ;	
		2	more P in flagellum than head ;		
		3	flagella take up more calcium ions ;		
		4	flagellum has larger surface area / ora;		
		5	no difference in heads and flagella of mutant mice spe	rm since no P ;	[3 max
(c)	(i)	ferti	lisation, in glass / in a dish ; R "test tube baby" unexp	blained	
		outs	side the reproductive tract / outside the body ;		[2
	(ii)	with			
		1	few / no, mutant sperm penetrate zona pellucida / ora	;	
		2	lack of calcium ions / ora ;		
		3	no / less, vigorous movement (of flagellum) / ora ;		
			out ZP mutant sperm can penetrate oocytes (without ZP) ;		
		4 5		two and mutant	
		5	differences in penetration less significant between wild	• •	
		6	flagellum movement not needed for penetration (of ood	,	
		7	AVP; e.g. smaller % success of wild-type sperm with	-	ZP compare

with wild with ZP because, lack of binding site / damage to oocyte [4 max]

[Total: 15]

	Pa	ge 5	www.dynamicpapers.con Mark Scheme Syllabus Pape					
	га	ye .	,	GCE A/AS	LEVEL – May/June 2008		9700	Paper 04
5	(-)	4	haat					
5	(a)	1		terium obtains energ				
		2 3		synthesis of materia	15 ;			
		3 4		growth / division;	arbon compounds for energy	. A po	mod carbon o	mound
		4	uue			y, A 112		[2 max]
	(b)	1	take	es up large area ;				
		2	unsi	ghtly;				
		3	requ	uires, lot of water / c	ontinuous water supply;			
		4	cont	amination of water	/ pollution due to acid ;			
		5	Cu /	Fe, toxic to plants	;			[2 max]
	(c)			ing (accept ora for I	0,			
		1			o sophisticated machinery /	requires	less maintenar	nce;
		2			n / less fossil fuels used ;			
		3		safety hazards / sat				
		4	-	anism easy to, obtai	n / culture ;			
		5		replicating ;				
		6 7		te less hazardous;				
		7 8	•	osal of waste, costs				
		o 9		low grade ores / scr	ap non,			
		-		workers needed ; use in situ ;				[4 max]
		10	ICI.					ן א ווומאן
								[Total:8]
6	(a)	alle (dif		t) form of a gene;	A variety / version			
		(an		y torm of a gorie ,	ignore refs to locus / muta	tion		[1]
		rec	essiv	e				
		alle	ele wł	nich does not have	e its effect in heterozygote		vhich (only) ha	
		hor	nozyę	gote / affects pheno	type if dominant allele is abs	sent;		[1]
			, .		/			
	(D)	ger	ne / al	llele, on X chromoso	ome / sex linkage ;			
		ferr	nale, i	needs 2 RGC <u>allele</u>	<u>s</u> / homozygous recessive /	can be h	eterozygous;	
		ma	le nee	eds 1 RGC <u>allele</u> ;				[2 max]
				<u> </u>				

	www.dynamicpapers.com				
Page 6	Mark Scheme	Syllabus	Paper		
	GCE A/AS LEVEL – May/June 2008	9700	04		

(c) $1 - X^R X^r / Rr$;

 $4 - X^{R}Y / R / R^{\circ} / R$ -;

 $6 - X^{r}Y / r / r^{o} / r$ -;

 $7 - X^{R}X^{r} / Rr;$

if X and Y not used then mark to max 3

[Total:8]

[4]

7 (a) (i) ref. wavelength

- 1 chlorophyll **a** peaks at <u>430</u>nm **and** chlorophyll **b** peaks at <u>450</u>nm ;
- 2 chlorophyll **a** peaks at <u>660</u>nm **and** chlorophyll **b** peaks at 635–640nm ;
- 3 ref. linking 400–500nm with blue light / ref. linking 600–700nm with red light ;
- 4 (both have) little absorption, between 500–600nm / in green light;
 A little absorption, chlorophyll a 450–600 and chlorophyll b 500–600;
- ref. light absorption
- 5 (both) peaks in blue light are higher than peaks in red light;
- 6 chlorophyll **b** higher than chlorophyll **a** in the blue end / chlorophyll **a** higher than chlorophyll **b** in the red end / AW ; **A** converse
- 7 comparative figures for light absorption to illustrate points 5 or 6; [3 max]

ignore units

- (ii) 1 absorbed light used for photosynthesis;
 - 2 higher rate of photosynthesis in red and blue light;
 - 3 action peak(s) / high rate of photosynthesis, correspond to absorption peak(s);
 - 4 blue / shorter wavelength, light has more energy / ora;
 - 5 not an exact match between absorption and action spectra (in middle region);
 - 6 role of carotenoids / accessory pigments, (in middle region); [3 max]
- (iii) they contain chlorophyll;

green / blue green / yellow green, light reflected ; [2]

(b) W – label line to stroma;

Y – label line to, granum / intergranal membranes ; [2]

		www	v.dynamicpape	ers.com
Pag	ge 7		Syllabus	Paper
		GCE A/AS LEVEL – May/June 2008	9700	04
(c)	1	light not limiting ;		
	2	much, ATP / reduced <u>NADP</u> , available ;		
	3	CO ₂ is the limiting factor ;		
	4	because low concentration CO_2 (in atmosphere);		
	5	<u>more</u> CO_2 combines with RuBP;		
	6	ref. rubisco ;		
	7	Calvin cycle / light independent stage ;		
	8	GP to TP ;		
	9	more hexose produced ;		
	10	ref. fate of hexose ;		[5 max]
				[Total:15]
8 (a)	(i)	same, mean / mode ;		
		narrower (5–35); ignore height, curve should be symmetry	netrical	[2]
	(ii)	stabilising ;		[1]
(b)	(i)	mean / mode, to left of 20cm ;		
		narrower (0–35); ignore height, curve should be symm	netrical	[2]
	(ii)	directional / evolutionary;		[1]
(iii)	fishing ;		
()	predation ;		
		AVP;		[2 max]
		//vi ,		
				[Total: 8]

Pa	ge 8	5	Mark Scheme	dynamicpape Syllabus	Paper
-			GCE A/AS LEVEL – May/June 2008	9700	04
(2)	i) 1 rec		uced, NAD / FAD ;		
(a)	2		sed to ETC ;		
	2	•	er membrane / cristae ;		
	4		rogen released (from reduced, NAD / FAD); R H2		
	5	-	into electrons and protons ;		
	6	•	ons in matrix ;		
	7	•	trons pass along, carriers / cytochromes ;		
	, 8		redox reactions ;		
	9		energy gradient ;		
	10		rgy released ; R produced		
	11		ons (pumped) into intermembrane space ;		
	12	•	on gradient ;		
	13	•	ons pass through (protein) channels ;		
		•	P synthase / stalked particles ;		
	15		P produced ;		
	16		miosmosis ;		
	17	elec	stron transferred to oxygen ;		
	18	addi	ition of proton (to oxygen) to form water / (oxygen) redu	uced to water;	[9 ma
			late mistakenly writes about photosynthesis only allow points 7, 8, 9, 10 and 15 to 5 max		
(b)		ytopl NAE	lasm D, becomes reduced / accepts H ;		
	20	duri	ng glycolysis ;		
		olants			
		•••	uvate converted to ethanal ;		
			anal reduced;		
	23 24	-	educed NAD;		
	24	ellia	anol formed ;		
		nima	ils uvate converted to lactate ;		
	23 26	•••	educed NAD;		
	20	-	iver / muscles ;		
	28		ws glycolysis to continue ;		[6 ma
	allo	w eit	her 23 or 26		
					Tatal: 41
					[Total: 15

	Pa	ge 9	e 9 Mark Scheme Syllabus			Paper	
		3	GCE A/AS LEVEL – May/June 2008 9700				
0	(a)	endocrin					
		1		nones;			
		2	cher	mical messengers; A chemicals that transfer info	ormation		
		3	duct	tless glands / (released) into blood ;			
		4	targe	et, organs / cells ;			
		5	ref. ı	receptors on cell membranes ;			
		6	exar	mple of named hormone and effect ;			
		ner 7	<i>vous</i> impu	ulses / action potentials ; R electrical, signals / cu	rrent		
		8	alon	ig, neurones / nerve fibres ; R nerves			
		9	syna	apse (with target) / neuromuscular junction ;			
		10	ref. I	receptor / effector / sensory / motor, neurones ;			
				ces – endocrine v effect / ora ;			
		12	long	lasting effect / ora ;			
		13	wide	espread effect / ora ;			
		14	AVP	?; e.g. extra detail of synapse		[8 max	
	(b)	15	IAA	/ plant growth regulator ;			
		16	synt	hesised in, growing tips / apical buds / meristems ;			
		17	mov	res by diffusion ;			
		18	from	n cell to cell ;			
		19	also	, mass flow / in phloem ;			
		20	stim	ulates cell elongation; R cell enlargement			
		21	inhit	bits, side / lateral, buds / growth ; A inhibits branc	hing		
		22	plan	t grows, upwards / taller ; A stem elongates			
		23	IAA	/ auxin, not solely responsible ;			
		24	inter	raction between IAA and other plant growth regulate	ors;		
		25	AVP	?; e.g. role of ABA and lateral bud inhibition			
		26	AVF	? ; e.g. cytokinins antagonistic to IAA / gibberellins e	enhance IAA	[7 max	

[Total: 15]