

Cambridge International Examinations Cambridge International Advanced Level

COMPUTER SCIENCE

9608/32 October/November 2016

Paper 3 Written Paper MARK SCHEME Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 $\ensuremath{\textcircled{B}}$ IGCSE is the registered trademark of Cambridge International Examinations.

www.dunamicnaners.com

Syllabu 9608		Paper 32 [3]
9608		32 [3]
		[3]
		[1] [1]
		[Max 3]
		[3]
f.t.		[1] [1]
		[Max 3]
		[3]
		[1] [1]
		[Max 3]
		[1]
		[1]
	1	1
1 1	1	[1] [1]
-	f.t. 1 1	f.t. 1 1 1

Ра 2	ige 3		Mark Cabama				
2			Mark Scheme			Syllabus	Paper
2		Cambridge Interna	tional A Level – C	ctober/Nove	mber 2016	9608	32
	(a)	Statement		Compilatio	n stage		
	- 1 2	This stage can improve the time taken to execute the statement: x = y + 0		Lexical an	alysis		
	-	This stage produces object code.		Syntax an	alysis		1 mark for each correct
	-	This stage makes use of tree data structures.		Code gene	eration		line
	- - !	This stage enters symbols in the symbol table.		Optimisa	tion		
	(b)	PQ+	I				[4] [1]
	(c)	(i)		2			[1]

					V \				
				3	3	5			4
	2		1	1	1	(1	6		mark
2	2	4	4	4	4	4	4	(-2)	perning
	*				+	+	_		
									[4]

(ii)	b*a	[1]
	– (c + d + a)	[1]
	Order must be correct for both parts	

(iii) Rules of precedence means different operators have different priorities // by example multiply is done before add [1]
 In RPN evaluation of operators is left to right // operators are used in the sequence in which they are read [1]
 No need for brackets // infix may require the use of brackets [1]

[[]Max 2]

www.dynamicpapers.com

Page 4	L I			Mark Scheme	www.aynanno	Syllabus	Paper
		Cambri	dge Internat	ional A Level – Octobe	r/November 2016	9608	32
3 (a)	Th Lo	e page is aded at / s	present in <u>m</u> stored /prese	<u>emory</u> nt in page frame 542 // it	s memory address is	542	[1] [1]
(b)	(i)	Next ins Page 6 i Instructi Program	truction is firs is not presen on can only t n cannot cont	st instruction in Page 6 t in memory be executed if present in tinue until Page 6 is load	memory ed		[1] [1] [1] [1]
							[Max 2]
	(ii)	When th A page this gen ISR cod Causes	here is an atte fault occurs / erates an inte e is executed the OS to loa	empt to load an instructio / Page 5 finishes … errupt 1 ad page 6 into memory	on for a page not in m	emory	[1] [1] [1] [1] [1]
							[Max 3]
(c)	(i) (ii)	Time of	entry (NOT t	ime in memory)			[1]
	()	Page	Presence Flag	Page frame address	Additional data		
		6	1	221	12:07:34:49		[1 + 1 + 1]
((iii)	When th	he procedure	call is made – Page 1 is	swapped out and Pa	ge 3 is swar	oped in [1]

 At the end of the procedure call – Page 3 is swapped out and Page 1 is swapped in [1]

 Page 1/3 is always in memory shortest amount of time

 The entire sequence is repeated for every iteration

[Max 3]

[1]

(iv) Thrashing // $\underline{continually}$ swapping pages

www.dynamicpapers.com

		www.uynannep	apers.	
Pa	ige 5	Mark Scheme	Syllabus	Paper
		Cambridge International A Level – October/November 2016	9608	32
4	(a) (i)	A set of rules governing communications/transmission of data /sending and receive	ing data	[1 [1
	(ii)	For example, (Web) browser / email client		[1
	(iii)	For example, Web server / email server		[1
	(iv)	Security //example: for example, alteration of transmitted messages Privacy // for example, only intended receiver can view data Authentication // for example, trust in other party		[1 [1 [1
				[Max 2]
	(b) For whi	example: ich protocol will be used there are a number of different versions of the two protocols		[1 [1
	ses ses enc aut	uniquely identifies a related series of messages between server and ssion type reusable or not cryption method public / private keys to be used // asymmetric/ symmetric hentication method	client	[1 [1 [1 [1 [1 [1 [1]

[Max 2 parameters]

[Max 4]

(c) For example:

secure file transfer	[1]
	[Max 2]

www.dynamicpapers.com

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International A Level – October/November 2016	9608	32

5 (a) (i)

I	npu	t	Working space	Out	put
Ρ	Q	R		J	K
0	0	0		0	0
0	0	1		0	1
0	1	0		0	1
0	1	1		1	0
1	0	0		0	1
1	0	1		1	0
1	1	0		1	0
1	1	1		1	1

1 mark each column

If zero marks then 6 or 7 pairs correct – 1 mark

[2]

[1]

[1]

(ii)	Full adder	[1]
(iii)	C / Carry S / Sum represents the carry part of the addition of three bits represents the sum part of the addition of three bits	[1] [1] [1] [1]

(b) (i) A.

(A+B).C

(ii) Allow follow through from (b)(i)

A. ((A+B).C) = A.(A.C + B.C) = A.A.C + A.B.C = A.C + A.B.C = A.C (1 + B) = A.C.1 = A.C

1 mark for each correct simplification line – max 3 [3] 1 mark for A.C if correct answer to part **(b)(i)** [1]

				www.dynami	cpapers.	com
Ρ	age 7		Mark Schem	le	Syllabus	Paper
		Cambridge In	ternational A Level –	October/November 2016	9608	32
6	(a)					
		Computer A	Computer B	Server		4 ×
	Ĺ				С	omputer to Switch [1]
		Computer C	Computer D	Switch		Server to Switch [1]

(b)

Statement	True	False
All packets must be routed via the server.		~
Computer B can read a copy of the packet sent from the Server to Computer A.		~
No collisions are possible.	~	

(c)	(i)	Router / Switch / Bridge	[1]
	(ii)	Router uses IP addresses in making decisions Router has routing table Routing table has entry for associated network ID // routing table has entry for host address // routing table used to make decision on where to route packet	[1] [1]
			[1]
		Switch / Bridge use MAC addresses MAC address table created Switch / bridge use MAC address table to make decision on where to route packet	[1] [1] [1]

[Max 2]