Write your name here			
Surname	Other	names	
Pearson	Centre Number	Candidate Number	
Edexcel GCE			
Biology			
Advanced Subsidiary			
•	ansport, Genes a	and Haalth	
Office 1: LifeStyle, 11	ansport, acries	and nearm	
Office 1: Lifestyle, 11		and riealth	
Thursday 25 May 2017 –		Paper Reference	
	Afternoon		

Instructions

- Use **black** ink or ball-point pen.
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.

Information

- The total mark for this paper is 80.
- The marks for **each** question are shown in brackets
 - use this as a guide as to how much time to spend on each question.
- Questions labelled with an asterisk (*) are ones where the quality of your written communication will be assessed
 - you should take particular care with your spelling, punctuation and grammar, as well as the clarity of expression, on these questions.
- Candidates may use a calculator.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over ▶

P53548A
©2017 Pearson Education Ltd.

Answer ALL questions.

Some questions must be answered with a cross in a box \boxtimes . If you change your mind about an answer, put a line through the box \boxtimes and then mark your new answer with a cross \boxtimes .

- 1 Cigarette smoke contains substances that increase the risk of the formation of blood clots and of developing cardiovascular disease (CVD).
 - (a) For each of the statements below, put a cross ⊠ in the box that corresponds to the correct statement.
 - (i) Blood clotting is needed to reduce

(1)

- A atherosclerosis
- **B** blood pressure
- C infection
- **D** obesity
 - (ii) Platelets are

(1)

- **A** antibodies
- B antioxidants
- **C** cell fragments
- **D** enzymes

(iii) Fibrin is

(1)

- A a soluble protein
- B an amino acid
- C an enzyme
- **D** an insoluble protein

(iv) Thrombin is

(1)

- A a cell fragment
- **B** a fibrous protein
- C an enzyme
- **D** an organelle

(i) Using this information, explain why smoking increases the risk of developing	
cardiovascular disease (CVD).	(3)
(ii) Name one type of drug that would be useful for treating a smoker at risk of	
developing CVD and explain how it works to prevent CVD.	(3)
	(3)
oe of drug	
w it works to prevent CVD	
With works to prevent evb	

- 2 Amylase is an enzyme that catalyses the breakdown of starch to maltose.
 - (a) (i) Name the type of chemical reaction catalysed by amylase.

(1)

(ii) Name the bond in the starch molecule that is broken by amylase.

(1)

(b) The effect of temperature on the breakdown of starch by amylase was investigated.

The quantity of maltose produced was measured during the course of two experiments: one carried out at 18 °C and the other at 23 °C.

The graph below shows the results of this investigation.

(i) State why the quantity of maltose produced became constant in this investigation.

(1)

(ii) Explain why, in the first four minutes of this investigation, more maltose was produced at 23 $^{\circ}$ C than at 18 $^{\circ}$ C.	(2)
(iii) On the graph, draw the curve you would expect to obtain if the experiment at 23°C is repeated with an increased amylase concentration.	
(iv) Describe how the effect of amylase concentration on the breakdown of starch	(2)
at 23 °C could be investigated.	(4)
(Total for Question 2 = 11 ma	rks)

3	an	
	(a) State one difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and facilitated difference and one similarity between active transport and transport and transport and transport and transport and transport and transport active transport and transport and transport and transport and transport active transport and transport and transport and transport active transport and transport active transport and transport active transport active transport and transport active	ffusion. (2)
Dif	ference	
Sin	nilarity	
	(b) Vitamin C and vitamin D are essential for human health.	
	Vitamin C is water-soluble. Vitamin D is lipid-soluble.	
	Explain how the structure of the cell surface membrane affects how each of these passes through the membrane.	vitamins (4)
Vit	amin C	(-1)
•		
Vit	amin D	

(c)	(c) High concentrations of sodium chloride in blood plasma can damage red blood cells.		
	Explain the effects on red blood cells of high concentrations of sodium chloride in blood plasma.		
	blood plasma.	(3)	
(Total for Question 3 = 9 marks)			

4	The mammalian lung is adapted for efficient gas exchange.	
	Describe how each of the following features assists in producing an efficient gaseous exchange system.	
	(a) The lungs are composed of many alveoli. Each alveolus has a wall 0.1 μm thick.	(2)
	(b) The alveoli are ventilated.	(2)

(c) A dense network of capillaries covers the outside of each alveolu	s. (3)
(Total for O	uestion 4 = 7 marks)
(Total for Q	uestion 4 – 7 marks)

BLANK PAGE

5	The molecules DNA and RNA are involved in protein synthesis. (a) (i) Name the sugar in DNA.	
		(1)
	(ii) State how many carbon atoms are present in the sugar in DNA.	(1)
	(iii) Name the nitrogenous base that is present in DNA but not in RNA.	(1)

(b) The diagram below shows part of the process of protein synthesis.

For each of the statements below, put a cross \boxtimes in the box that corresponds to the correct statement.

(i) mRNA is represented on the diagram by the

(1)

- A letter P
- **B** letter Q
- C letter R
- D letter S
- (ii) The anticodon is represented on the diagram by the

(1)

- 🛮 🗛 letter Q
- **B** letter R
- C letter S
- **D** letter T

(iii) The bonds linking the structures labelled ${\bf U}$ are called	(1)
A amino bonds	
☑ B hydrogen bonds	
C peptide bonds	
D phosphodiester bonds	
(iv) Name the stage of protein synthesis illustrated in this dia	agram. (1)
*(c) Explain how the sequence of bases in DNA determines the protein.	orimary structure of a
p. otenii.	(4)

Haemoglobin contains four polypeptide chains, two α chains and two β chains. Haemoglobin has the amino acid glutamic acid at position 6 in each β chain.

The R group for glutamic acid is —CH₂—CH₂—COOH

(a) Draw a structural diagram of the amino acid glutamic acid.

(3)

(b) Sickle-cell haemoglobin is another form of haemoglobin that causes sickle-cell anaemia. Sickle-cell haemoglobin has the amino acid valine at position 6 in each β chain.

The R group for valine is —CH—(CH₃),

The diagram below shows the first seven amino acids in the β chains of haemoglobin and sickle-cell haemoglobin.

Haemoglobin β chain

Sickle-cell haemoglobin β chain

Valine Histidine Leucine Threonine Proline Valine Glu

(i) Using the information given, suggest why sickle-cell anaemia could be caused by a mutation in a single DNA base.

(2)

the properties of the haemoglobin molecule.	(3)
	•••••
	••••
Sickle-cell haemoglobin can cause red blood cells to become sickle-shaped.	
This can cause blockages in capillaries that result in pain in muscle tissue.	
(i) Suggest why capillaries, rather than arteries, are more likely to be blocked in a	
person with sickle-cell anaemia.	
	(1)

(ii) Suggest why a person with sickle-cell anaemia experiences pain in muscle tiss	
	(3)
(Total for Question 6 = 12 ma	arks)

7 Patients with kidney failure may be treated with a dialysis machine.

This removes excess water and solutes, such as urea, from their blood.

A dialysis machine includes a partially permeable membrane and dialysis fluid. This fluid consists of water with controlled concentrations of salts and glucose.

(a) The diagram below shows a dialysis machine in use.

(i) The rate of blood flow through the dialysis machine is 200 cm³ min-1.

Calculate how long it would take this dialysis machine to process 5 dm³ of blood.

Show your working.

(2)

.....minutes

(ii) Name the process that removes urea from the blood of the patient during dial	ysis. (1)
(iii) Suggest why fresh dialysis fluid is added and waste dialysis fluid is removed during this procedure.	(2)

Explain why raised lipid levels in the blood may in	I levels in their blood.	
Explain why raised lipid levels in the blood may in cardiovascular disease (CVD) for these patients.	icrease the risk of developing	
cardiovascular disease (CVD) for these patients.		(4)
		(- /
		•••••
	(Total for Ougstion 7 – 0 mg	arks)
	(Total for Question 7 = 9 ma	31 K5)

8 The recommended daily amount of nutrients required by a person depends on a number of factors.

The table below shows some of the recommended daily mean energy requirements for different people.

Gender	Age range / years	Activity level	Mean energy requirement /MJ per day
Male	0 to 1	Moderately active	3.3
Male	3 to 4	Moderately active	6.5
Male	9 to 11	Moderately active	9.5
Male	15 to 17	Moderately active	12.0
Male	18 to 34	Moderately active	12.0
Male	18 to 34	Very active	14.0
Male	35 to 64	Moderately active	11.5
Male	35 to 64	Very active	14.0
Male	65 to 74	Moderately active	10.0
Male	75 and over	Moderately active	9.0

Gender	Age range / years	Activity level	Mean energy requirement /MJ per day
Female	0 to 1	Moderately active	3.0
Female	3 to 4	Moderately active	6.3
Female	9 to 11	Moderately active	8.5
Female	15 to 17	Moderately active	9.0
Female	18 to 54	Moderately active	9.0
Female	18 to 54	Very active	10.5
Female	55 to 74	Moderately active	8.0
Female	75 and over	Moderately active	7.0

(a)	Calculate the percentage change in the mean energy requirements per day for moderately active females between the age ranges 15 to 17 years and 75 years and over.	
	Show your working.	(2)
		%
*(b)	Using information from the tables, describe and explain how energy requirements change with age.	
		(5)

(c) Using the information from the tables, suggest the consequences for moderately active children, aged 9 to 11, who have an energy intake of 10.0 MJ per day.	
	(4)
(Total for Question 8 = 11 ma	arks)

TOTAL FOR PAPER = 80 MARKS

BLANK PAGE

BLANK PAGE

