

Mark Scheme (Results)

Summer 2014

Pearson Edexcel GCE in Core Mathematics 4 (6666/01)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA038467
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75.
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.
- 3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- oe or equivalent (and appropriate)
- dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- The second mark is dependent on gaining the first mark
- dM1 denotes a method mark which is dependent upon the award of the previous method mark.
- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.

- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Core Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^2 + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to $x = ...$

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

Question Number		Scheme	Marks	
1.		$x^3 + 2xy - x - y^3 - 20 = 0$		
(a)	$\left\{ \underbrace{\frac{\partial y}{\partial x}} \times \right\} \underbrace{3x^2} + \left(\underbrace{2y + 2x \frac{dy}{dx}} \right) - 1 - 3y^2 \frac{dy}{dx} = 0$			
		$3x^{2} + 2y - 1 + (2x - 3y^{2})\frac{dy}{dx} = 0$	dM1	
		$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2}$	A1 cso	
		2	[5]	
(b)	At P($(3,-2)$, $m(T) = \frac{dy}{dx} = \frac{3(3)^2 + 2(-2) - 1}{3(-2)^2 - 2(3)}$; $= \frac{22}{6}$ or $\frac{11}{3}$		
	and e	ither T: $y2 = \frac{11}{3}(x - 3)$ see notes	M1	
		or $(-2) = \left(\frac{11}{3}\right)(3) + c \implies c =,$		
	T : 11	(x-3y-39=0 or K(11x-3y-39)=0	A1 cso	
	Alteri	native method for part (a)		
(a)		$\left\{ \frac{dx}{dy} \times \right\} \frac{3x^2 \frac{dx}{dy} + \left(2y \frac{dx}{dy} + 2x\right) - \frac{dx}{dy} - 3y^2 = 0}{2y + 2x}$	M1 <u>A1</u> <u>B1</u>	
	$2x - 3y^{2} + \left(3x^{2} + 2y - 1\right)\frac{dx}{dy} = 0$ dM1			
	$\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x} \text{or} \frac{1 - 3x^2 - 2y}{2x - 3y^2}$			
	[5]			
		Question 1 Notes		
(a) General	Note	Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$ or $\frac{1 - 3x^2 - 2y}{2x - 3y^2}$ from no working is full marks.		
	Note Writing down $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{2x - 3y^2}$ or $\frac{1 - 3x^2 - 2y}{3y^2 - 2x}$ from no working is M1A0B0M1A0		1A0	
	Note Few candidates will write $3x^2 + 2y + 2x dy - 1 - 3y^2 dy = 0$ leading to $\frac{dy}{dx} = \frac{3x^2 + 2y - 1}{3y^2 - 2x}$, o.e.		$\frac{y-1}{2x}$, o.e.	
		This should get full marks.		
1. (a)	M1 Differentiates implicitly to include either $2x \frac{dy}{dx}$ or $-y^3 \to \pm k y^2 \frac{dy}{dx}$. (Ignore $\left(\frac{dy}{dx} = \right)$).).	
	A1 $x^3 \to 3x^2$ and $-x - y^3 - 20 = 0 \to -1 - 3y^2 \frac{dy}{dx} = 0$			
	B1 $2xy \to 2y + 2x \frac{dy}{dx}$			
	Note	If an extra term appears then award 1 st A0.		

1. (a) ctd	Note	$3x^{2} + 2y + 2x\frac{dy}{dx} - 1 - 3y^{2}\frac{dy}{dx} \rightarrow 3x^{2} + 2y - 1 = 3y^{2}\frac{dy}{dx} - 2x\frac{dy}{dx}$		
		will get 1^{st} A1 (implied) as the "= 0" can be implied by rearrangement of their equation.		
	dM1	dependent on the first method mark being awarded.		
		An attempt to factorise out all the terms in $\frac{dy}{dx}$ as long as there are at least two terms in $\frac{dy}{dx}$.		
		ie + $(2x - 3y^2)\frac{dy}{dx} =$		
	Note	Placing an extra $\frac{dy}{dx}$ at the beginning and then including it in their factorisation is fine for dM1.		
	A1	For $\frac{1-2y-3x^2}{2x-3y^2}$ or equivalent. Eg: $\frac{3x^2+2y-1}{3y^2-2x}$		
		cso: If the candidate's solution is not completely correct, then do not give this mark. isw: You can, however, ignore subsequent working following on from correct solution.		
1. (b)	M1	Some attempt to substitute both $x = 3$ and $y = -2$ into their $\frac{dy}{dx}$ which contains both x and y		
		to find m_T and		
		• either applies $y - 2 = (\text{their } m_T)(x - 3)$, where m_T is a numerical value.		
		• or finds c by solving $(-2) = (\text{their } m_T)(3) + c$, where m_T is a numerical value.		
	Note	Using a changed gradient (i.e. applying $\frac{-1}{\text{their } \frac{dy}{dx}}$ or $\frac{1}{\text{their } \frac{dy}{dx}}$ is M0).		
	A1	Accept any integer multiple of $11x - 3y - 39 = 0$ or $11x - 39 - 3y = 0$ or $-11x + 3y + 39 = 0$, where their tangent equation is equal to 0.		
	cso	A correct solution is required from a correct $\frac{dy}{dx}$.		
	isw	You can ignore subsequent working following a correct solution.		
	Alterna	ative method for part (a): Differentiating with respect to y		
1. (a)	M1	Differentiates implicitly to include either $2y \frac{dx}{dy}$ or $x^3 \to \pm kx^2 \frac{dx}{dy}$ or $-x \to -\frac{dx}{dy}$		
		(Ignore $\left(\frac{\mathrm{d}x}{\mathrm{d}y}\right)$).		
	A1	$x^3 \to 3x^2 \frac{dx}{dy}$ and $-x - y^3 - 20 = 0 \to -\frac{dx}{dy} - 3y^2 = 0$		
	B1	$2xy \to 2y \frac{\mathrm{d}x}{\mathrm{d}y} + 2x$		
	dM1	dependent on the first method mark being awarded.		
		An attempt to factorise out all the terms in $\frac{dx}{dy}$ as long as there are at least two terms in $\frac{dx}{dy}$.		
	A1	For $\frac{1 - 2y - 3x^2}{2x - 3y^2}$ or equivalent. Eg: $\frac{3x^2 + 2y - 1}{3y^2 - 2x}$		
		cso: If the candidate's solution is not completely correct, then do not give this mark.		
		1 7		

Question Number		Scheme	Marks	
2.	$\left\{ (1+kx)^{-4} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^2 + \dots \right\}$			
(a)	Eithe	Either $(-4)k = -6$ or $(1 + kx)^{-4} = 1 + (-4)(kx)$ see notes		
		leading to $k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$	A1	
(b)		Either $\frac{(-4)(-5)}{2!}$ or $(k)^2$ or $(kx)^2$ Either $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$		
	$\bigg\{A =$	$\frac{(-4)(-5)}{2!} \left(\frac{3}{2}\right)^2 $ $\Rightarrow A = \frac{45}{2}$ $\Rightarrow A = \frac{45}{2}$ or 22.5	A1	
			[3] 5	
Note	T 4h:	Question 2 Notes		
Note		s question ignore part labelling and mark part (a) and part (b) together. $(4 - 4)^{-4}$		
	Note	Writing down $\{(1 + kx)^{-4}\} = 1 + (-4)(kx) + \frac{(-4)(-4-1)}{2!}(kx)^2 +$ gets all the method marks in Q2. i.e. (a) M1 and (b) M1M1		
(a)	M1	Award M1 for • either writing down $(-4)k = -6$ or $4k = 6$		
		• or expanding $(1 + kx)^{-4}$ to give $1 + (-4)(kx)$		
		• or writing down $(-4)k x = -6$ or $(-4k) = -6x$ or $-4k x = -6x$		
	A1	$k = \frac{3}{2}$ or 1.5 or $\frac{6}{4}$ from no incorrect sign errors.		
	Note The M1 mark can be implied by a candidate writing down the correct value of k . Note Award M1 for writing down $4k = 6$ and then A1 for $k = 1.5$ (or equivalent).			
	Note	Award M0 for $4k = -6$ (if there is no evidence that $(1 + kx)^{-4}$ expands to give $1 + (-4x)^{-4}$	-(kx)+	
	Note	$1 + (-4)(kx)$ leading to $(-4)k = 6$ leading to $k = \frac{3}{2}$ is M1A0.		
(b)	M1	For either $\frac{(-4)(-4-1)}{2!}$ or $\frac{(-4)(-5)}{2!}$ or 10 or $(k)^2$ or $(kx)^2$		
	M1	Either $\frac{(-4)(-4-1)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(k)^2$ or $\frac{(-4)(-5)}{2!}(kx)^2$ or $\frac{(-4)(-5)}{2!}(their k)^2$	or $10k^2$	
	Note	Candidates are allowed to use 2 instead of 2!		
	A1	Uses $k = 1.5$ to give $A = \frac{45}{2}$ or 22.5		
	Note	$A = \frac{90}{4}$ which has not been simplified is A0.		
	Note	Award A0 for $A = \frac{45}{2}x^2$.		
	Note	Allow A1 for $A = \frac{45}{2}x^2$ followed by $A = \frac{45}{2}$		
	Note	$k = -1.5$ leading to $A = \frac{45}{2}$ or 22.5 is A0.		

Question Number	Scheme	
3.	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(a)	$\{\text{At } x = 3,\} \ y = 0.68212 \ (5 \ \text{dp})$.68212 B1 cao
(b)	Outside brackets $\frac{1}{2} \times 1 \times \left[1.42857 + 0.55556 + 2(0.90326 + \text{their } 0.68212) \right]$ For structure of $\left[\underline{} \right]$	
	$\left\{ = \frac{1}{2}(5.15489) \right\} = 2.577445 = 2.5774 (4 dp)$ anything that rounds to 2	
(c)	 Overestimate and a reason such as {top of} trapezia lie above the curve a diagram which gives reference to the extra area concave or convex d² y/dx² > 0 (can be implied) bends inwards curves downwards 	[3] B1
(d)	$\left\{ u = \sqrt{x} \Rightarrow \right\} \frac{du}{dx} = \frac{1}{2} x^{-\frac{1}{2}} \text{ or } \frac{dx}{du} = 2u$	B1 [1]
(d)	$\int \frac{10}{2u^2 + 5u} \cdot 2u du$ Either $\left\{ \int \right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{ du \right\}$ or $\left\{ \int \right\} \frac{\pm k}{u \left(\alpha u^2 \pm \beta u \right)}$	
	$\left\{ = \int \frac{20}{2u+5} du \right\} = \frac{20}{2} \ln(2u+5)$ $\frac{\pm \lambda \ln(2u+5) \text{ or } \pm \lambda \ln\left(u+\frac{5}{2}\right),}{\text{with no other } t}$ $\frac{20}{2u+5} \to \frac{20}{2} \ln(2u+5) \text{ or } 10 \ln\left(u+\frac{5}{2}\right),$	terms.
	$\left\{ \left[\frac{20}{2} \ln(2u+5) \right]_{1}^{2} \right\} = 10 \ln(2(2)+5) - 10 \ln(2(1)+5)$ Substitutes limits of 2 and (or 4 and 1 in x) and suffice the correct way	l 1 in <i>u</i> btracts M1
	$10\ln 9 - 10\ln 7$ or $10\ln \left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$	A1 oe cso
		[6] 11
3. (a)	Question 3 Notes B1 0.68212 correct answer only. Look for this on the table or in the candidate's work	ring.
(b)	B1 Outside brackets $\frac{1}{2} \times 1$ or $\frac{1}{2}$ or equivalent.	0'
	M1 For structure of trapezium rule [
	Note A1 No errors are allowed [eg. an omission of a y-ordinate or an extra y-ordinate or a real anything that rounds to 2.5774	epeated y ordinate].
	Note Working must be seen to demonstrate the use of the trapezium rule. (Actual area is	s 2.51314428)

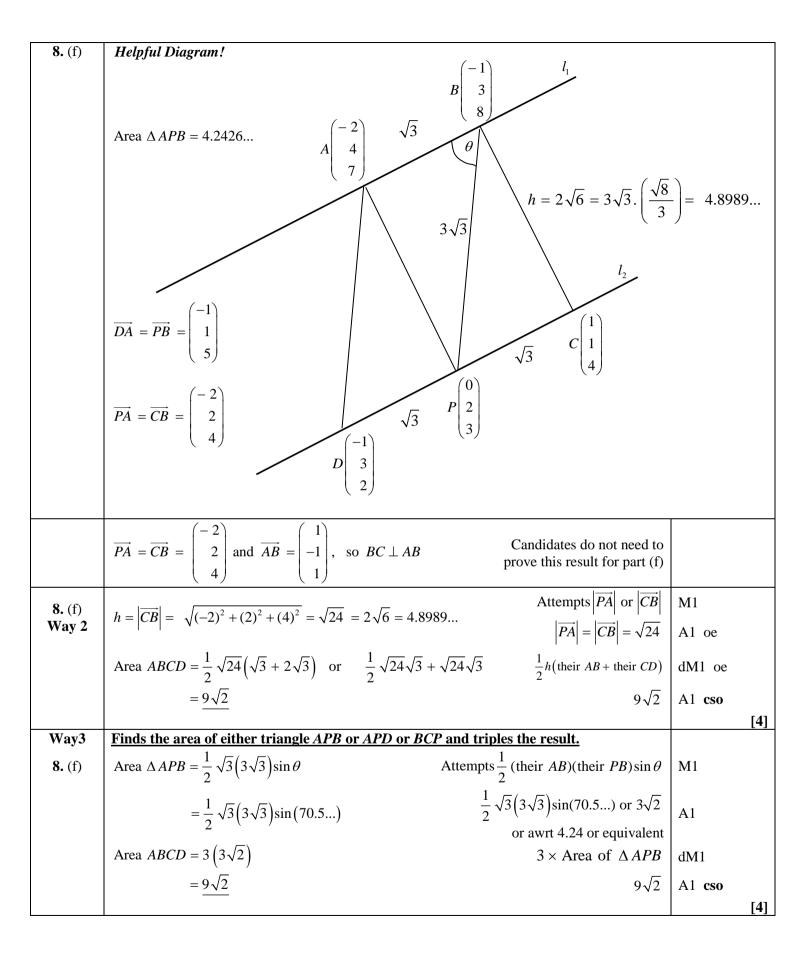
3. (b) contd	Note	Award B1M1A1 for $\frac{1}{2}(1.42857 + 0.55556) + (0.90326 + \text{their } 0.68212) = 2.577445$		
		Bracketing mistake: Unless the final answer implies that the calculation has been done correctly		
		award B1M0A0 for $\frac{1}{2} \times 1 + 1.42857 + 2(0.90326 + \text{their } 0.68212) + 0.55556$ (nb: answer of 5.65489).		
		award B1M0A0 for $\frac{1}{2} \times 1$ (1.42857 + 0.55556) + 2(0.90326 + their 0.68212) (nb: answer of 4.162825).		
		Alternative method: Adding individual trapezia		
		Area $\approx 1 \times \left[\frac{1.42857 + 0.90326}{2} + \frac{0.90326 + "0.68212"}{2} + \frac{"0.68212" + 0.55556}{2} \right] = 2.577445$		
	B1	B1: 1 and a divisor of 2 on all terms inside brackets.		
	M1 A1	M1: First and last ordinates once and two of the middle ordinates twice inside brackets ignoring the 2. A1: anything that rounds to 2.5774		
(c)	B1	Overestimate and either trapezia lie above curve or a diagram that gives reference to the extra area		
		eg. This diagram is sufficient. It must		
		show the top of a trapezium lying		
		above the curve.		
		<u> </u>		
		or concave or convex or $\frac{d^2y}{dx^2} > 0$ (can be implied) or bends inwards or curves downwards.		
	Note	Reason of "gradient is negative" by itself is B0.		
(d)	B1	$\frac{\mathrm{d}u}{\mathrm{d}x} = \frac{1}{2}x^{-\frac{1}{2}} \text{or} \mathrm{d}u = \frac{1}{2\sqrt{x}} \mathrm{d}x \text{or} 2\sqrt{x} \mathrm{d}u = \mathrm{d}x \text{or} \mathrm{d}x = 2u \mathrm{d}u \text{or} \frac{\mathrm{d}x}{\mathrm{d}u} = 2u \text{o.e.}$		
	M1	Applying the substitution and achieving $\left\{ \int \right\} \frac{\pm k u}{\alpha u^2 \pm \beta u} \left\{ du \right\} \text{ or } \left\{ \int \right\} \frac{\pm k}{u \left(\alpha u^2 \pm \beta u \right)} \left\{ du \right\},$		
		$k, \alpha, \beta \neq 0$. Integral sign and du not required for this mark.		
	M1	Cancelling u and integrates to achieve $\pm \lambda \ln(2u + 5)$ or $\pm \lambda \ln\left(u + \frac{5}{2}\right)$, $\lambda \neq 0$ with no other terms.		
	A1	cso. Integrates $\frac{20}{2u+5}$ to give $\frac{20}{2}\ln(2u+5)$ or $10\ln\left(u+\frac{5}{2}\right)$, un-simplified or simplified.		
	Note	BE CAREFUL! Candidates must be integrating $\frac{20}{2u+5}$ or equivalent.		
		So $\int \frac{10}{2u+5} du = 10\ln(2u+5)$ WOULD BE A0 and final A0.		
	M1	Applies limits of 2 and 1 in u or 4 and 1 in x in their (i.e. any) changed function and subtracts the correct way round.		
	A1	Exact answers of either $10\ln 9 - 10\ln 7$ or $10\ln \left(\frac{9}{7}\right)$ or $20\ln 3 - 10\ln 7$ or $20\ln \left(\frac{3}{\sqrt{7}}\right)$ or $\ln \left(\frac{9^{10}}{7^{10}}\right)$		
		or equivalent. Correct solution only.		
	Note Note	You can ignore subsequent working which follows from a correct answer. A decimal answer of 2.513144283 (without a correct exact answer) is A0.		
	11010	11 decimal district of 2.5.151 (255 (without a correct cancer disswer) is 110.		

Question Number		Scheme	Marks
4.	$\frac{\mathrm{d}V}{\mathrm{d}t} =$	80π , $V = 4\pi h(h+4) = 4\pi h^2 + 16\pi h$,	
	ui	$\frac{\mathrm{d}V}{\mathrm{d}h} = 8\pi h + 16\pi$ $\pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0$ $8\pi h + 16\pi$	M1 A1
	$\left\{\frac{\mathrm{d}V}{\mathrm{d}h}\right\}$	$\times \frac{\mathrm{d}h}{\mathrm{d}t} = \frac{\mathrm{d}V}{\mathrm{d}t} \Rightarrow \left\{ (8\pi h + 16\pi) \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \right. \qquad \left(\text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h} \right) \times \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi$	M1 oe ¬
	$\left\{\frac{\mathrm{d}h}{\mathrm{d}t}\right\}=$	$= \frac{\mathrm{d}V}{\mathrm{d}t} \div \frac{\mathrm{d}V}{\mathrm{d}h} \Rightarrow \left\{ \begin{array}{c} \frac{\mathrm{d}h}{\mathrm{d}t} = 80\pi \times \frac{1}{8\pi h + 16\pi} \end{array} \right. \qquad \text{or} 80\pi \div \text{Candidate's } \frac{\mathrm{d}V}{\mathrm{d}h}$	WI oc
	When	$h=6,\ \left\{\frac{\mathrm{d}h}{\mathrm{d}t}=\right\}\frac{1}{8\pi(6)+16\pi}\times80\pi\ \left\{=\frac{80\pi}{64\pi}\right\}$ dependent on the previous M1 see notes	dM1
	$\frac{\mathrm{d}h}{\mathrm{d}t} = 1$	$1.25 \text{ or } \frac{5}{4} \text{ or } \frac{10}{8} \text{ or } \frac{80}{64}$	
			[5] 5
	Altern	native Method for the first M1A1	
	Droduc	et rule: $\begin{cases} u = 4\pi h & v = h + 4 \\ \frac{du}{dh} = 4\pi & \frac{dv}{dh} = 1 \end{cases}$	
	Produc	trule: $\int \frac{du}{dh} = 4\pi$ $\frac{dv}{dh} = 1$	
			M1
	$\frac{1}{\mathrm{d}h} =$	$4\pi(h+4) + 4\pi h$ $\pm \alpha h \pm \beta, \ \alpha \neq 0, \ \beta \neq 0$ $4\pi(h+4) + 4\pi h$	A1
	M1	Question 4 Notes An expression of the form $\pm \alpha h \pm \beta$, $\alpha \neq 0$, $\beta \neq 0$. Can be simplified or un-simplified	-d
	A1	Correct simplified or un-simplified differentiation of V .	
		eg. $8\pi h + 16\pi$ or $4\pi(h+4) + 4\pi h$ or $8\pi(h+2)$ or equivalent.	
	Note	Some candidates will use the product rule to differentiate V with respect to h . (See Alt N	
	Note	$\frac{dV}{dh}$ does not have to be explicitly stated, but it should be clear that they are differentiating	ng their <i>V</i> .
	M1	Candidate's $\frac{dV}{dh}$ $\times \frac{dh}{dt} = 80\pi$ or $80\pi \div \text{Candidate's } \frac{dV}{dh}$	
	Note	Also allow 2 nd M1 for $\left(\text{Candidate's } \frac{\text{d}V}{\text{d}h}\right) \times \frac{\text{d}h}{\text{d}t} = 80 \text{ or } 80 \div \text{Candidate's } \frac{\text{d}V}{\text{d}h}$	
	Note	Give 2 nd M0 for $\left(\text{Candidate's } \frac{\text{d}V}{\text{d}h}\right) \times \frac{\text{d}h}{\text{d}t} = 80 \pi t \text{ or } 80 \text{k} \text{ or } 80 \text{k} \div \text{Candidate's } t$	$\frac{\mathrm{d}V}{\mathrm{d}h}$
	dM1	which is dependent on the previous M1 mark.	
		Substitutes $h = 6$ into an expression which is a result of a quotient of their $\frac{dV}{dh}$ and 80π	(or 80)
	A1	1.25 or $\frac{5}{4}$ or $\frac{10}{8}$ or $\frac{80}{64}$ (units are not required).	
	Note	$\frac{80\pi}{64\pi}$ as a final answer is A0.	
	Note	Substituting $h = 6$ into a correct $\frac{dV}{dh}$ gives 64π but the final M1 mark can only be awar	ded if this
		is used as a quotient with 80π (or 80)	

Question Number	Scheme	Marks
5.	$x = 4\cos\left(t + \frac{\pi}{6}\right), y = 2\sin t$	
(a)	$\frac{\text{Main Scheme}}{x = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right)} \qquad \cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right)$	M1 oe
	So, $\{x + y\} = 4\left(\cos t \cos\left(\frac{\pi}{6}\right) - \sin t \sin\left(\frac{\pi}{6}\right)\right) + 2\sin t$ Adds their expanded x (which is in terms of t) to $2\sin t$	dM1
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) + 2\sin t$	
	$=2\sqrt{3}\cos t *$ Correct proof	A1 * [3]
(a)	Alternative Method 1 $x = 4 \left(\cos t \cos \left(\frac{\pi}{6} \right) - \sin t \sin \left(\frac{\pi}{6} \right) \right) \qquad \qquad \cos \left(t + \frac{\pi}{6} \right) \to \cos t \cos \left(\frac{\pi}{6} \right) \pm \sin t \sin \left(\frac{\pi}{6} \right)$	M1 oe
	$=4\left(\left(\frac{\sqrt{3}}{2}\right)\cos t - \left(\frac{1}{2}\right)\sin t\right) = 2\sqrt{3}\cos t - 2\sin t$	
	So, $x = 2\sqrt{3}\cos t - y$ Forms an equation in x , y and t .	dM1
	$x + y = 2\sqrt{3}\cos t * $ Correct proof	
	Main Scheme	[3]
(b)	$\frac{\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2 = 1}{\left(\frac{x+y}{2\sqrt{3}}\right)^2 + \left(\frac{y}{2}\right)^2} = 1$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x 's and y 's.	M1
	$\Rightarrow \frac{(x+y)^2}{12} + \frac{y^2}{4} = 1$	
	(0.1)	A1
(b)	$\{a=3, b=12\}$	[2]
(b)	Alternative Method 1 $(x + y)^2 = 12\cos^2 t = 12(1-\sin^2 t) = 12 - 12\sin^2 t$	
	So, $(x + y)^2 = 12 - 3y^2$ Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x 's and y 's.	M1
	$\Rightarrow (x+y)^2 + 3y^2 = 12$ equation containing only x s and y s. $\Rightarrow (x+y)^2 + 3y^2 = 12$	A1 [2]
(b)	Alternative Method 2	[-]
	$(x+y)^2 = 12\cos^2 t$	
	As $12\cos^2 t + 12\sin^2 t = 12$	3.61
	then $(x + y)^2 + 3y^2 = 12$	M1, A1 [2]
		5

	Question 5 Notes			
5. (a)	M1	$\cos\left(t + \frac{\pi}{6}\right) \to \cos t \cos\left(\frac{\pi}{6}\right) \pm \sin t \sin\left(\frac{\pi}{6}\right) \text{or} \cos\left(t + \frac{\pi}{6}\right) \to \left(\frac{\sqrt{3}}{2}\right) \cos t \pm \left(\frac{1}{2}\right) \sin t$		
	Note	If a candidate states $\cos(A + B) = \cos A \cos B \pm \sin A \sin B$, but there is an error <i>in its application</i>		
		then give M1.		
		Awarding the dM1 mark which is dependent on the first method mark		
Main	dM1	Adds their expanded x (which is in terms of t) to $2\sin t$		
	Note	Writing $x + y =$ is not needed in the Main Scheme method.		
Alt 1	dM1	Forms an equation in <i>x</i> , <i>y</i> and <i>t</i> .		
	A1*	Evidence of $\cos\left(\frac{\pi}{6}\right)$ and $\sin\left(\frac{\pi}{6}\right)$ evaluated and the proof is correct with no errors.		
	Note	${x + y} = 4\cos\left(t + \frac{\pi}{6}\right) + 2\sin t$, by itself is M0M0A0.		
(b)	M1	Applies $\cos^2 t + \sin^2 t = 1$ to achieve an equation containing only x's and y's.		
	A1	leading $(x + y)^2 + 3y^2 = 12$		
	711			
	SC	Award Special Case B1B0 for a candidate who writes down either		
		• $(x + y)^2 + 3y^2 = 12$ from no working		
		• $a = 3$, $b = 12$, but does not provide a correct proof.		
	NT 4	Alternative mathe 12 is fine for M1 A1		
	Note	Alternative method 2 is fine for M1 A1 Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b \implies a = 3, b = 12$ is SC: B1B0		
	Note	writing $(x + y) = 12\cos t$ followed by $12\cos t + a(4\sin t) = 0 \implies a = 3, b = 12 \text{ is SC}$: B1B0		
	Note	Writing $(x + y)^2 = 12\cos^2 t$ followed by $12\cos^2 t + a(4\sin^2 t) = b$		
	1,300	• states $a = 3$, $b = 12$		
		• and refers to either $\cos^2 t + \sin^2 t = 1$ or $12\cos^2 t + 12\sin^2 t = 12$		
		 and there is no incorrect working 		
		would get M1A1		

6. (i) $\int xe^{4x} dx = \frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\} $ $= \frac{1}{4}xe^{4x} - \int \frac{1}{16}e^{4x} \{dx\} $ $= \frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{$	Question Number	Scheme	Mark	ζS
$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} + c\}$ $= \frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} + c\}$ $= \frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ $= \frac{1}{4}(2e^{x})^{2}$ $= \frac{1}{4$		$\pm \alpha x e^{4x} - \int \beta e^{4x} \{ dx \}, \alpha \neq 0, \beta > 0$	M1	
(ii) $\int \frac{8}{(2x-1)^3} dx = \frac{8(2x-1)^{-2}}{(2)(-2)} \left\{ + c \right\} $ $\frac{8(2x-1)^{-2}}{(2)(-2)} \text{ or equivalent.}$ $\left\{ = -2(2x-1)^{-2} \left\{ + c \right\} \right\} $ $\frac{8(2x-1)^{-2}}{(2)(-2)} \text{ or equivalent.}$ A1 [2] (iii) $\frac{dy}{dx} = e^* \csc 2y \csc y y = \frac{\pi}{6} \text{ at } x = 0$ $\frac{\text{Main Scheme}}{\int \csc 2y \csc y} dy = \int e^* dx \text{or } \int \sin 2y \sin y dy = \int e^* dx$ B1 oc $\int 2\sin y \cos y \sin y dy = \int e^* dx \text{Applying } \frac{1}{\cos \csc 2y} \text{ or } \sin 2y \to 2\sin y \cos y \text{M1}$ Integrates to give $\pm u \sin^3 y \text{M1}$ A1 $\frac{2}{3} \sin^3 y = e^x \left\{ + c \right\} \qquad 2\sin^2 y \cos y \to \frac{2}{3} \sin^3 y \text{A1}$ $e^x \to e^x \text{B1}$ $\frac{2}{3} \sin^3 \left(\frac{\pi}{6} \right) = e^0 + c \text{or } \frac{2}{3} \left(\frac{1}{8} \right) - 1 = c \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{M1}$ A1 $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } \frac{2}{3} \sin^3 y = e^x - \frac{11}{12} \qquad \frac{2}{3} \sin^3 y = e^x - \frac{11}{12} \text{A1}$ $\frac{\text{Alternative Method 1}}{\int \cos 2y \csc y \cdot y} dy = \int e^x dx \text{or } \int \sin 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} (\cos 3y - \cos y) dy = \int e^x dx \text{or } \int \sin 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \sin 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \sin 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \cos 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \cos 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \cos 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \cos 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \cos 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \cos 2y \sin y dy = \int e^x dx \text{B1 oc}$ $\int -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ -\frac{1}{2} \left(\frac{1}{3} - \frac{1}{3} \right) - 1 \right\} = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \qquad \text{giving } -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12} \qquad -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{$	6. (i)	$\int xe^{4x} dx = \frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$ $\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \{dx\}$	A1	
(ii) $\int \frac{8}{(2x-1)^3} dx = \frac{8(2x-1)^2}{(2)(-2)} \{+c\} $ $\frac{8(2x-1)^2}{(2)(-2)} $ or equivalent. All		$= \frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x} \left\{ + c \right\}$ $\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$	A1	5 23
		$\pm \lambda (2x-1)^{-2}$	M1	[3]
(iii) $\frac{dy}{dx} = e^{x} \csc 2y \csc y y = \frac{\pi}{6} \text{ at } x = 0$ $\frac{\text{Main Scheme}}{\int \frac{1}{\csc 2y \csc y} dy} = \int e^{x} dx \text{or} \int \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int 2\sin y \cos y \sin y dy = \int e^{x} dx \text{Applying } \frac{1}{\cos 2y} \text{ or } \sin 2y \rightarrow 2\sin y \cos y \text{M1}$ $\frac{2}{3}\sin^{3} y = e^{x} \left\{ + c \right\} 2\sin^{2} y \cos y \rightarrow \frac{2}{3}\sin^{3} y \text{A1}$ $e^{x} \rightarrow e^{x} \text{B1}$ $\frac{2}{3}\sin^{3} \left\{ \frac{\pi}{6} \right\} = e^{0} + c \text{or} \frac{2}{3} \left\{ \frac{1}{8} \right\} - 1 = c \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{in an integrated equation containing } c$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} \frac{2}{3}\sin^{3} y = e^{x} - \frac{11}{12} \frac{2}{3}\sin^{3} y = e^{x} - \frac{11}{12} \text{B1 oe}$ $\frac{\text{Alternative Method 1}}{\int \frac{1}{\csc 2y \csc y} dy} = \int e^{x} dx \text{or} \int \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} (\cos 3y - \cos y) dy = \int e^{x} dx \text{or} \int \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^{x} \left\{ + c \right\} \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^{x} \left\{ + c \right\} \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^{x} \left\{ + c \right\} \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^{x} \left\{ + c \right\} \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^{x} \left\{ + c \right\} \cos 2y \cos y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^{x} \left\{ + c \right\} \cos 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^{x} \left\{ + c \right\} \cos 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^{x} \left\{ + c \right\} \cos 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^{x} \left\{ + c \right\} \cos 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} dx \sin 2y \sin y dy = \int e^{x} d$	(ii)	$\int \frac{\delta}{(2x-1)^3} dx = \frac{\delta(2x-1)}{(2)(-2)} \left\{ + c \right\}$ $\frac{8(2x-1)^{-2}}{(2)(-2)} \text{ or equivalent.}$	A1	
$\frac{\text{Main Scheme}}{\int \frac{1}{\csc 2y \csc y}} \text{d}y = \int e^x dx \qquad \text{or} \int \sin 2y \sin y \text{d}y = \int e^x dx$ $\int 2\sin y \cos y \sin y \text{d}y = \int e^x dx \qquad \text{Applying } \frac{1}{\csc 2y} \text{ or } \sin 2y \rightarrow 2\sin y \cos y \qquad \text{M1}$ $\frac{2}{3}\sin^3 y = e^x \left\{ + c \right\} \qquad \qquad 2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y \qquad \text{A1}$ $\frac{2}{3}\sin^3 \left(\frac{\pi}{6}\right) = e^0 + c \text{or} \frac{2}{3} \left(\frac{1}{8}\right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0$ in an integrated equation containing c $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \qquad \qquad \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \qquad \text{A1}$ $\frac{\text{Alternative Method 1}}{\left[\cos 2y \cos 2y \cos c y \right]} \text{d}y = \int e^x dx \qquad \text{or} \int \sin 2y \sin y dy = \int e^x dx \qquad \text{B1 oe}$ $\int -\frac{1}{2}(\cos 3y - \cos y) dy = \int e^x dx \qquad \text{or} \int \sin 2y \sin y dy = \int e^x dx \qquad \text{B1 oe}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \qquad \frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) \qquad \text{A1}$ $= \frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) = e^x \left\{ + c \right\} \qquad \qquad \frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y \right) \qquad \text{A2}$ $= \frac{1}{2} \left(\frac{1}{3}\sin \left(\frac{3\pi}{6} \right) - \sin \left(\frac{\pi}{6} \right) \right) = e^0 + c \text{or} -\frac{1}{2} \left(\frac{1}{3} - \frac{1}{2} \right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \qquad \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \qquad -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \qquad \text{A1}$		$\left\{ = -2(2x-1)^{-2} \left\{ + c \right\} \right\} $ {Ignore subsequent working}.		[2]
$ \frac{1}{\cos c 2 y \csc y} dy = \int e^{s} dx \qquad \text{or} \qquad \int \sin 2 y \sin y dy = \int e^{s} dx \qquad \qquad \text{B1 oe} $ $ \int 2 \sin y \cos y \sin y dy = \int e^{s} dx \qquad \qquad \text{Applying } \frac{1}{\cos c 2 y} \text{ or } \sin 2 y \to 2 \sin y \cos y \qquad \text{M1} $ $ \frac{2}{3} \sin^{3} y = e^{s} \left\{ + c \right\} \qquad \qquad 2 \sin^{2} y \cos y \to \frac{2}{3} \sin^{3} y \qquad \text{A1} $ $ e^{s} \to e^{s} \qquad \text{B1} $ $ \frac{2}{3} \sin^{3} \left(\frac{\pi}{6} \right) = e^{0} + c \text{or} \frac{2}{3} \left(\frac{1}{8} \right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c \qquad \text{A1} $ $ \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} \qquad \qquad \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{1}{12} \cos^{2} y \cos y \Rightarrow \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{1}{12} \cos^{2} y \cos y \Rightarrow \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{1}{12} \cos^{2} y \cos y \Rightarrow \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{1}{12} \cos^{2} y \cos y \Rightarrow \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{1}{12} \cos^{2} y \cos y \Rightarrow \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{1}{12} \cos^{2} y \cos y \Rightarrow \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{1}{12} \cos^{2} y \cos y \Rightarrow \frac{2}{3} \sin^{3} y = e^{s} - \frac{11}{12} $ $ \frac{1}$	(iii)	$\frac{dy}{dx} = e^x \csc 2y \csc y \qquad y = \frac{\pi}{6} \text{ at } x = 0$		
$\int 2\sin y \cos y \sin y dy = \int e^x dx$ $Applying \frac{1}{\csc 2y} \text{ or } \sin 2y \to 2\sin y \cos y$ $Integrates to give \pm \mu \sin^3 y A1 \frac{2}{3}\sin^3 y = e^x \left\{ + c \right\} 2\sin^2 y \cos y \to \frac{2}{3}\sin^3 y A1 e^x \to e^x B1 \frac{2}{3}\sin^2 \left(\frac{\pi}{6}\right) = e^0 + c \text{ or } \frac{2}{3}\left(\frac{1}{8}\right) - 1 = c \cos c \left(\frac{\pi}{3}\right) = \frac{\pi}{6} \text{ and } x = 0 \sin an integrated equation containing c \cos c \left(\frac{\pi}{3}\right) = \frac{\pi}{6} \text{ or } \int \sin 2y \sin y dy = \int e^x dx \int -\frac{1}{2}(\cos 3y - \cos y) dy = \int e^x dx \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\} \int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = $				
Integrates to give $\pm \mu \sin^3 y$ M1 $\frac{2}{3}\sin^3 y = e^x \left\{ + c \right\}$ $2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$ $e^x \rightarrow e^x$ B1 $\frac{2}{3}\sin^3 \left(\frac{\pi}{6}\right) = e^0 + c \text{ or } \frac{2}{3}\left(\frac{1}{8}\right) - 1 = c$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c $\left\{ \Rightarrow c = -\frac{11}{12} \right\}$ giving $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ A1 $\frac{\text{Alternative Method 1}}{\int \frac{1}{\cos 2y \cos 2y \cos 2y} dy} = \int e^x dx$ or $\int \sin 2y \sin y dy = \int e^x dx$ B1 oe $\int -\frac{1}{2}(\cos 3y - \cos y) dy = \int e^x dx$ Sin $2y \sin y \rightarrow \pm \lambda \cos 3y \pm \lambda \cos y$ Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$ $-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\}$ $e^x \rightarrow e^x \text{ as part of solving their DE.}$ $-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c \text{ or } -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c $\left\{ \Rightarrow c = -\frac{11}{12} \right\}$ giving $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c $\left\{ \Rightarrow c = -\frac{11}{12} \right\}$ giving $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ A1		$\int \frac{1}{\csc 2y \csc y} dy = \int e^x dx \qquad \text{or} \qquad \int \sin 2y \sin y dy = \int e^x dx$	B1 oe	
$\frac{2}{3}\sin^3 y = e^x \left\{ + c \right\}$ $2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$ $e^x \rightarrow e^x$ $B1$ $\frac{2}{3}\sin^3 \left(\frac{\pi}{6}\right) = e^0 + c \text{ or } \frac{2}{3} \left(\frac{1}{8}\right) - 1 = c$ $\sin an integrated equation containing c$ $\Rightarrow c = -\frac{11}{12} \text{giving} \frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \text{A1}$ $\frac{\text{Alternative Method 1}}{\int \frac{1}{\cos \cos 2y \csc y} dy} = \int e^x dx \text{or } \int \sin 2y \sin y dy = \int e^x dx$ $\int -\frac{1}{2} (\cos 3y - \cos y) dy = \int e^x dx \text{sin } 2y \sin y dy = \int e^x dx$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{ + c \right\}$ $\int e^x \rightarrow e^x \text{as part of solving their DE.}$ $\int -\frac{1}{2} \left(\frac{1}{3}\sin \left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c \text{or } -\frac{1}{2} \left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $\int \frac{1}{2} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$		$\int 2\sin y \cos y \sin y dy = \int e^x dx$ Applying $\frac{1}{\csc 2y}$ or $\sin 2y \to 2\sin y \cos y$	M1	
$e^{z} \rightarrow e^{x} B1$ $\frac{2}{3}\sin^{3}\left(\frac{\pi}{6}\right) = e^{0} + c \text{or} \frac{2}{3}\left(\frac{1}{8}\right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \\ \text{in an integrated equation containing } c \\ \left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} \frac{2}{3}\sin^{3}y = e^{x} - \frac{11}{12} \qquad \qquad \frac{2}{3}\sin^{3}y = e^{x} - \frac{11}{12} \text{A1} $ $\frac{\text{Alternative Method 1}}{\int \frac{1}{\cos \csc 2y \csc y} \text{dy} = \int e^{x} \text{dx} \text{or} \int \sin 2y \sin y \text{dy} = \int e^{x} \text{dx} \qquad \qquad \text{B1 oe} $ $\int -\frac{1}{2}(\cos 3y - \cos y) \text{dy} = \int e^{x} \text{dx} \text{sin } 2y \sin y \text{dy} = \int e^{x} \text{dx} \text{B1 oe} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{A1} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{A2} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{B2} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{A2} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{B3} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{B4} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{B5} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{B1} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{B2} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{B2} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{B3} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{B4} $ $\int -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ + c \right\} \qquad \qquad \frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ -\frac{1}{12}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^{x} \left\{ -\frac{1}{12}\left(\frac{1}{3}\sin 3y - \sin y\right) + \frac{1}{2}\sin y - e^{x} \left\{ -\frac{1}{12}\left(\frac{1}{3}\sin 3y - \sin y\right) + \frac{1}{2}\sin y - e^{x} \left\{ -\frac{1}{12}\left(\frac{1}{3}\sin 3y - \sin y\right) + \frac{1}{2}\sin y - e^{x} \left\{ -\frac{1}{12}\left(\frac{1}{3}\sin 3y - \sin y\right) + \frac{1}{2}\sin y - e^{x} \left\{ -\frac{1}{12}\left(\frac{1}{3}$		Integrates to give $\pm \mu \sin^3 y$	M1	
$\frac{2}{3}\sin^3\left(\frac{\pi}{6}\right) = e^0 + c \text{ or } \frac{2}{3}\left(\frac{1}{8}\right) - 1 = c$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$		$\frac{2}{3}\sin^3 y = e^x \left\{ + c \right\} $ $2\sin^2 y \cos y \rightarrow \frac{2}{3}\sin^3 y$	A1	
$\begin{cases} \Rightarrow c = -\frac{11}{12} \end{cases} & \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \end{cases} & \text{in an integrated equation containing } c \\ \Rightarrow c = -\frac{11}{12} \end{cases} & \text{giving } \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \end{cases} $ $\begin{cases} \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \end{cases} $ $\begin{cases} \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \end{cases} $ $\begin{cases} \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \end{cases} $ $\begin{cases} \frac{1}{\cos \cot 2y \csc y} \cos \cot y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cot 2y \cos y} \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cos 2y \cos y} \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cos 2y \cos y} \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cos 2y \cos y} \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cot 2y \cos y} \cos y \\ \frac{1}{\cos \cos 2y \cos y} \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cos 2y \cos y} \cos y \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cos 2y \cos y} \cos y \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cos 2y \cos y} \cos y \cos y \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cos 2y \cos y} \cos y \cos y \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cos 2y \cos y} \cos y \cos y \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cos 2y \cos y} \cos y \cos y \cos y \cos y \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cos 2y \cos y} \cos y \cos y \cos y \cos y \cos y \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cos 2y \cos y} \cos y \cos y \cos y \cos y \cos y \cos y \end{aligned} $ $\begin{cases} \frac{1}{\cos \cos 2y \cos y} \cos y \cos$		$e^x \rightarrow e^x$	B1	
$\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} \frac{2}{3}\sin^3 y = e^x - \frac{11}{12} $ $\frac{2}{3}\sin^3 y = e^x - \frac{11}{12} \text{A1}$ $\frac{\text{Alternative Method 1}}{\int \frac{1}{\cos 2y \cos 2y \cos 2y} dy} = \int e^x dx \text{or} \int \sin 2y \sin y dy = \int e^x dx \qquad \text{B1 oe}$ $\int -\frac{1}{2}(\cos 3y - \cos y) dy = \int e^x dx \qquad \sin 2y \sin y \rightarrow \pm \lambda \cos 3y \pm \lambda \cos y \text{M1}$ $\text{Integrates to give } \pm \alpha \sin 3y \pm \beta \sin y \text{M1}$ $-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{+c\right\} \qquad \qquad -\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) \text{A1}$ $e^x \rightarrow e^x \text{ as part of solving their DE.}$ $\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c \text{or} -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c$ $\Rightarrow c = -\frac{11}{12} \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \text{A1}$		3 (6) $3(8)$	M1	
Alternative Method 1 $\int \frac{1}{\csc 2y \csc y} dy = \int e^x dx \text{or} \int \sin 2y \sin y dy = \int e^x dx$ $\int -\frac{1}{2} (\cos 3y - \cos y) dy = \int e^x dx \sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y \text{M1}$ Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$ $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} -\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) \text{A1}$ $e^x \to e^x \text{ as part of solving their DE.}$ $-\frac{1}{2} \left(\frac{1}{3} \sin \left(\frac{3\pi}{6} \right) - \sin \left(\frac{\pi}{6} \right) \right) = e^0 + c \text{or} -\frac{1}{2} \left(\frac{1}{3} - \frac{1}{2} \right) - 1 = c \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12} -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12} \text{A1}$			A1	
$\int \frac{1}{\csc 2y \csc y} dy = \int e^x dx \qquad \text{or} \qquad \int \sin 2y \sin y dy = \int e^x dx$ $\int -\frac{1}{2} (\cos 3y - \cos y) dy = \int e^x dx$ $\sin 2y \sin y \rightarrow \pm \lambda \cos 3y \pm \lambda \cos y \qquad \text{M1}$ Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$ $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\}$ $e^x \rightarrow e^x \text{ as part of solving their DE.}$ $-\frac{1}{2} \left(\frac{1}{3} \sin \left(\frac{3\pi}{6} \right) - \sin \left(\frac{\pi}{6} \right) \right) = e^0 + c \text{or} -\frac{1}{2} \left(\frac{1}{3} - \frac{1}{2} \right) - 1 = c$ $\begin{cases} \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c \end{cases}$ $\begin{cases} \Rightarrow c = -\frac{11}{12} \end{cases} \text{giving} -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $= \frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $= \frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$ $= \frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12}$		(12) 3 12 3 12		[7]
$\int -\frac{1}{2}(\cos 3y - \cos y) dy = \int e^x dx$ $\sin 2y \sin y \rightarrow \pm \lambda \cos 3y \pm \lambda \cos y$ Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$ $-\frac{1}{2}\left(\frac{1}{3}\sin 3y - \sin y\right) = e^x \left\{+c\right\}$ $e^x \rightarrow e^x \text{ as part of solving their DE.}$ $-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^0 + c \text{ or } -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c$ $\left\{\Rightarrow c = -\frac{11}{12}\right\}$ giving $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c $-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$ A1		Alternative Method 1		
Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$ $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\}$ $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right)$ $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right)$ A1 $e^x \rightarrow e^x \text{ as part of solving their DE.}$ B1 $-\frac{1}{2} \left(\frac{1}{3} \sin \left(\frac{3\pi}{6} \right) - \sin \left(\frac{\pi}{6} \right) \right) = e^0 + c \text{ or } -\frac{1}{2} \left(\frac{1}{3} - \frac{1}{2} \right) - 1 = c$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12} \qquad -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12} \qquad A1$			B1 oe	
Integrates to give $\pm \alpha \sin 3y \pm \beta \sin y$ $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\}$ $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right)$ $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right)$ A1 $e^x \rightarrow e^x \text{ as part of solving their DE.}$ B1 $-\frac{1}{2} \left(\frac{1}{3} \sin \left(\frac{3\pi}{6} \right) - \sin \left(\frac{\pi}{6} \right) \right) = e^0 + c \text{ or } -\frac{1}{2} \left(\frac{1}{3} - \frac{1}{2} \right) - 1 = c$ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12} \qquad -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^x - \frac{11}{12} \qquad A1$		$\int -\frac{1}{2}(\cos 3y - \cos y) dy = \int e^x dx \qquad \qquad \sin 2y \sin y \to \pm \lambda \cos 3y \pm \lambda \cos y$	M1	
$e^{x} \rightarrow e^{x} \text{ as part of solving their DE.} $ B1 $-\frac{1}{2} \left(\frac{1}{3} \sin \left(\frac{3\pi}{6} \right) - \sin \left(\frac{\pi}{6} \right) \right) = e^{0} + c \text{ or } -\frac{1}{2} \left(\frac{1}{3} - \frac{1}{2} \right) - 1 = c $ Use of $y = \frac{\pi}{6}$ and $x = 0$ in an integrated equation containing c $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{ giving } -\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^{x} - \frac{11}{12} $ $-\frac{1}{6} \sin 3y + \frac{1}{2} \sin y = e^{x} - \frac{11}{12} $ A1 $[7]$			M1	
$-\frac{1}{2}\left(\frac{1}{3}\sin\left(\frac{3\pi}{6}\right) - \sin\left(\frac{\pi}{6}\right)\right) = e^{0} + c \text{or} -\frac{1}{2}\left(\frac{1}{3} - \frac{1}{2}\right) - 1 = c \qquad \text{Use of } y = \frac{\pi}{6} \text{ and } x = 0 \text{ in an integrated equation containing } c$ $\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^{x} - \frac{11}{12} \qquad \qquad -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^{x} - \frac{11}{12} \qquad \qquad \text{A1}$		$-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right) = e^x \left\{ + c \right\} $ $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin y \right)$	A 1	
$\begin{cases} 2(3 + 6) & (6) \\ \begin{cases} \Rightarrow c = -\frac{11}{12} \end{cases} & \text{giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \end{cases} & \text{integrated equation containing } c \\ -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \end{cases} $ A1		$e^x \rightarrow e^x$ as part of solving their DE.	B1	
$\left\{ \Rightarrow c = -\frac{11}{12} \right\} \text{giving} -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \qquad \qquad -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \text{A1} $		2(3 (6) (6)) $2(3 2)$	M1	
		$\begin{cases} \Rightarrow c = -\frac{11}{12} \end{cases} \text{ giving } -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \qquad -\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12} \end{cases}$	A1	
17				[7] 12


		Question	6 Notes	
6. (i)	M1	Integration by parts is applied in the form $\pm a$	$\alpha x e^{4x} - \int \beta e^{4x} \{ dx \}$, where $\alpha \neq 0, \beta > 0$.	
		(must be in this form).	•	
	A1	$\frac{1}{4}xe^{4x} - \int \frac{1}{4}e^{4x} \left\{ dx \right\} \text{ or equivalent.}$		
	A1	$\frac{1}{4}xe^{4x} - \frac{1}{16}e^{4x}$ with/without + c. Can be u	n-simplified.	
	isw	You can ignore subsequent working following	•	
	SC	SPECIAL CASE: A candidate who uses u	$= x$, $\frac{dv}{dx} = e^{4x}$, writes down the correct "by p	parts"
		formula, but makes only one error when applying it ca	an be awarded Special Case M1.	
(ii)	M1	$\pm \lambda (2x-1)^{-2}$, $\lambda \neq 0$. Note that λ can be 1.		
	A1	$\frac{8(2x-1)^{-2}}{(2)(-2)} \text{ or } -2(2x-1)^{-2} \text{ or } \frac{-2}{(2x-1)^2}$	with/without $+ c$. Can be un-simplified.	
	Note	You can ignore subsequent working which for	ollows from a correct answer.	
(iii)	B1	implied by later working. Ignore the integra		nark can be
	Note	Allow B1 for $\int \frac{1}{\csc 2y \csc y} = \int e^x$	$\mathbf{or} \int \sin 2y \sin y = \int e^x$	
	M1		$y\cos y$ or $\sin 2y\sin y \rightarrow \pm \lambda\cos 3y \pm \lambda\cos 3y$	os y
	M1	seen anywhere in the candidate's working to Integrates to give $\pm \mu \sin^3 y$, $\mu \neq 0$ or $\pm \alpha \sin^3 y$		
		_)
	A1		ms) or integrates to give $-\frac{1}{2} \left(\frac{1}{3} \sin 3y - \sin 3y \right)$	n y
	B1	Evidence that e ^x has been integrated to give		
	M1	Some evidence of using both $y = \frac{\pi}{6}$ and $x = 0$ in an integrated or changed equation containing c.		aining c .
	Note	that is mark can be implied by the correct va		
	A1	$\left \frac{2}{3} \sin^3 y \right = e^x - \frac{11}{12}$ or $-\frac{1}{6} \sin 3y + \frac{1}{2} \sin y$	$= e^x - \frac{11}{12}$ or any equivalent correct answ	er.
	Note Alternativ	You can ignore subsequent working which for e Method 2 (Using integration by parts twice)		
	_	$\int y dy = \int e^x dx$		B1 oe
			Applies integration by parts twice to give $\pm \alpha \cos y \sin 2y \pm \beta \sin y \cos 2y$	M2
			$\frac{1}{3}\cos y \sin 2y - \frac{2}{3}\sin y \cos 2y$	A1
			(simplified or un-simplified) $e^x \rightarrow e^x$ as part of solving their DE.	B1
			as in the main scheme	M1
	$\frac{1}{-\cos y \sin y}$	$2y - \frac{2}{3}\sin y \cos 2y = e^x - \frac{11}{12}$	$-\frac{1}{6}\sin 3y + \frac{1}{2}\sin y = e^x - \frac{11}{12}$	A1
	3	3 12	6 2 12	[7]
	•			

Question Number	Scheme	Marks
7.	$x = 3\tan\theta$, $y = 4\cos^2\theta$ or $y = 2 + 2\cos 2\theta$, $0 \le \theta < \frac{\pi}{2}$.	
(a)	$\frac{\mathrm{d}x}{\mathrm{d}\theta} = 3\sec^2\theta$, $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -8\cos\theta\sin\theta$ or $\frac{\mathrm{d}y}{\mathrm{d}\theta} = -4\sin2\theta$	
	$\frac{dy}{dx} = \frac{-8\cos\theta\sin\theta}{3\sec^2\theta} \left\{ = -\frac{8}{3}\cos^3\theta\sin\theta = -\frac{4}{3}\sin2\theta\cos^2\theta \right\}$ their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$	M1
	$\frac{1}{dx}$	A1 oe
	At $P(3, 2)$, $\theta = \frac{\pi}{4}$, $\frac{dy}{dx} = -\frac{8}{3}\cos^3\left(\frac{\pi}{4}\right)\sin\left(\frac{\pi}{4}\right)$ $\left\{=-\frac{2}{3}\right\}$ substituting $\theta = \frac{\pi}{4}$ into their $\frac{dy}{dx}$	M1
	So, $m(\mathbf{N}) = \frac{3}{2}$ applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$	M1
	Either N: $y-2=\frac{3}{2}(x-3)$	
	or $2 = \left(\frac{3}{2}\right)(3) + c$ see notes	M1
	{At Q , $y = 0$, so, $-2 = \frac{3}{2}(x - 3)$ } giving $x = \frac{5}{3}$ $x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67	A1 cso
		[6]
(b)	$\left\{ \int y^2 dx = \int y^2 \frac{dx}{d\theta} d\theta \right\} = \left\{ \int \left\{ (4\cos^2 \theta)^2 3\sec^2 \theta \right\} \right\} $ see notes	M1 \
	So, $\pi \int y^2 dx = \pi \int (4\cos^2 \theta)^2 3\sec^2 \theta \{d\theta\}$ see notes	A1
	$\int y^2 dx = \int 48\cos^2\theta d\theta \qquad \qquad \int 48\cos^2\theta \{d\theta\}$	A1
	$= \{48\} \int \left(\frac{1 + \cos 2\theta}{2}\right) d\theta \left\{ = \int (24 + 24\cos 2\theta) d\theta \right\} $ Applies $\cos 2\theta = 2\cos^2 \theta - 1$	M1
	Dependent on the first method mark. For $\pm \alpha \theta \pm \beta \sin 2\theta$	dM1
	$= \{48\} \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right) \{= 24\theta + 12\sin 2\theta\}$ $\cos^2 \theta \to \left(\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta\right)$	A1
	$\int_{0}^{\frac{\pi}{4}} y^{2} dx \left\{ = 48 \left[\frac{1}{2} \theta + \frac{1}{4} \sin 2\theta \right]_{0}^{\frac{\pi}{4}} \right\} = \left\{ 48 \right\} \left(\left(\frac{\pi}{8} + \frac{1}{4} \right) - (0 + 0) \right) \left\{ = 6\pi + 12 \right\}$ Dependent on the third method mark.	dM1
	{So $V = \pi \int_0^{\frac{\pi}{4}} y^2 dx = 6\pi^2 + 12\pi$ }	
	$V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \frac{5}{3}\right) \left\{ = \frac{16\pi}{9} \right\}$ $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 \left(3 - \text{their } (a)\right)$	M1
	$\left\{ Vol(S) = 6\pi^2 + 12\pi - \frac{16\pi}{9} \right\} \Rightarrow Vol(S) = \frac{92}{9}\pi + 6\pi^2 $ $\frac{92}{9}\pi + 6\pi^2$	A1
	$\left\{ p = \frac{92}{9}, \ q = 6 \right\}$	[9]
		15

		Question 7 Notes	
7. (a)	1 st M1	Applies their $\frac{dy}{d\theta}$ divided by their $\frac{dx}{d\theta}$ or applies $\frac{dy}{d\theta}$ multiplied by their $\frac{d\theta}{dx}$	
	SC	Award Special Case 1 st M1 if both $\frac{dx}{d\theta}$ and $\frac{dy}{d\theta}$ are both correct.	
	1 st A1	Correct $\frac{dy}{dx}$ i.e. $\frac{-8\cos\theta\sin\theta}{3\sec^2\theta}$ or $-\frac{8}{3}\cos^3\theta\sin\theta$ or $-\frac{4}{3}\sin2\theta\cos^2\theta$ or any equivalent form.	
	2 nd M1	Some evidence of substituting $\theta = \frac{\pi}{4}$ or $\theta = 45^{\circ}$ into their $\frac{dy}{dx}$	
	Note	For 3^{rd} M1 and 4^{th} M1, $m(\mathbf{T})$ must be found by using $\frac{dy}{dx}$.	
	3 rd M1	applies $m(\mathbf{N}) = \frac{-1}{m(\mathbf{T})}$. Numerical value for $m(\mathbf{N})$ is required here.	
	4 th M1	• Applies $y - 2 = (\text{their } m_N)(x - 3)$, where m(N) is a numerical value,	
		• or <i>finds c</i> by solving $2 = (\text{their } m_N)3 + c$, where m(N) is a numerical value,	
		and $m_N = -\frac{1}{\text{their m}(\mathbf{T})}$ or $m_N = \frac{1}{\text{their m}(\mathbf{T})}$ or $m_N = -\text{their m}(\mathbf{T})$.	
	Note	This mark can be implied by subsequent working.	
	2 nd A1	$x = \frac{5}{3}$ or $1\frac{2}{3}$ or awrt 1.67 from a correct solution only.	
(b)	1 st M1	Applying $\int y^2 dx$ as $y^2 \frac{dx}{d\theta}$ with their $\frac{dx}{d\theta}$. Ignore π or $\frac{1}{3}\pi$ outside integral.	
	Note	You can ignore the omission of an integral sign and/or $d\theta$ for the 1 st M1.	
	Note	Allow 1 st M1 for $\int (\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ or $\int 4(\cos^2 \theta)^2 \times$ "their 3sec ² θ " d θ	
	1st A1	Correct expression $\left\{\pi \int y^2 dx\right\} = \pi \int (4\cos^2\theta)^2 3\sec^2\theta \left\{d\theta\right\}$ (Allow the omission of $d\theta$)	
	Note	IMPORTANT: The π can be recovered later, but as a correct statement only.	
	2 nd A1	$\left\{ \int y^2 dx \right\} = \int 48\cos^2\theta \left\{ d\theta \right\}. \text{ (Ignore } d\theta \text{). Note: } 48 \text{ can be written as } 24(2) \text{ for example.}$	
	2 nd M1	Applies $\cos 2\theta = 2\cos^2 \theta - 1$ to their integral. (Seen or implied .)	
	3 rd dM1*	which is dependent on the 1 st M1 mark. Integrating $\cos^2 \theta$ to give $\pm \alpha \theta \pm \beta \sin 2\theta$, $\alpha \neq 0$, $\beta \neq 0$, un-simplified or simplified.	
	3 rd A1	which is dependent on the 3 rd M1 mark and the 1 st M1 mark.	
		Integrating $\cos^2 \theta$ to give $\frac{1}{2}\theta + \frac{1}{4}\sin 2\theta$, un-simplified or simplified.	
		This can be implied by $k\cos^2\theta$ giving $\frac{k}{2}\theta + \frac{k}{4}\sin 2\theta$, un-simplified or simplified.	
	4 th dM1	which is dependent on the 3 rd M1 mark and the 1 st M1 mark.	
		Some evidence of applying limits of $\frac{\pi}{4}$ and 0 (0 can be implied) to an integrated function in θ	
	5 th M1	Applies $V_{\text{cone}} = \frac{1}{3}\pi (2)^2 (3 - \text{their part}(a) \text{ answer}).$	
	Note	Also allow the 5 th M1 for $V_{\text{cone}} = \pi \int_{\text{their } \frac{5}{3}}^{3} \left(\frac{3}{2}x - \frac{5}{2} \right)^{2} \{dx\}$, which includes the correct limits.	
	4 th A1	$\frac{92}{9}\pi + 6\pi^2$ or $10\frac{2}{9}\pi + 6\pi^2$	
	Note Note	A decimal answer of 91.33168464 (without a correct exact answer) is A0. The π in the volume formula is only needed for the 1 st A1 mark and the final accuracy mark.	

7.		Working with a Cartesian Equation					
		A cartesian equation for C is $y = \frac{36}{x^2 + 9}$					
(a)	1 st M1	$\frac{\mathrm{d}y}{\mathrm{d}x} = \pm \lambda x \left(\pm \alpha x^2 \pm \beta\right)^{-2} \text{or} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pm \lambda x}{\left(\pm \alpha x^2 \pm \beta\right)^2}$					
		$\frac{dy}{dx} = -36(x^2 + 9)^{-2}(2x) \text{or} \frac{dy}{dx} = \frac{-72x}{(x^2 + 9)^2} \text{un-simplified or simplified.}$					
	2 nd dM1	Dependent on the 1 st M1 mark if a candidate uses this method					
		For substituting $x = 3$ into their $\frac{dy}{dx}$					
		i.e. at $P(3, 2)$, $\frac{dy}{dx} = \frac{-72(3)}{(3^2 + 9)^2} \left\{ = -\frac{2}{3} \right\}$					
		From this point onwards the original scheme can be applied.					
(b)	1 st M1	For $\int \left(\frac{\pm \lambda}{\pm \alpha x^2 \pm \beta}\right)^2 \{dx\}$ (π not required for this mark)					
	A1	For $\pi \int \left(\frac{36}{x^2 + 9}\right)^2 \{dx\}$ (π required for this mark)					
		To integrate, a substitution of $x = 3\tan\theta$ is required which will lead to $\int 48\cos^2\theta d\theta$ and so					
		from this point onwards the original scheme can be applied.					
		Another cartesian equation for C is $x^2 = \frac{36}{y} - 9$					
(a)	1 st M1	$\pm \alpha x = \pm \frac{\beta}{y^2} \frac{dy}{dx}$ or $\pm \alpha x \frac{dx}{dy} = \pm \frac{\beta}{y^2}$					
	1st A1	$2x = -\frac{36}{v^2} \frac{dy}{dx}$ or $2x \frac{dx}{dy} = -\frac{36}{v^2}$					
	2 nd dM1	Dependent on the 1 st M1 mark if a candidate uses this method					
		For substituting $x = 3$ to find $\frac{dy}{dx}$					
		i.e. at $P(3, 2)$, $2(3) = -\frac{36}{4} \frac{dy}{dx} \Rightarrow \frac{dy}{dx} =$					
		From this point onwards the original scheme can be applied.					

Question Number	Scheme				
8.	$\overrightarrow{OA} = -2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k}$, $\overrightarrow{OB} = -\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}$ & $\overrightarrow{OP} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$				
(a)	$\overrightarrow{AB} = \pm ((-\mathbf{i} + 3\mathbf{j} + 8\mathbf{k}) - (-2\mathbf{i} + 4\mathbf{j} + 7\mathbf{k})); = \mathbf{i} - \mathbf{j} + \mathbf{k}$	M1; A1			
			[2]		
	$\begin{pmatrix} -2 \end{pmatrix} \qquad \begin{pmatrix} 1 \end{pmatrix} \qquad \begin{pmatrix} -1 \end{pmatrix} \qquad \begin{pmatrix} 1 \end{pmatrix}$				
(b)	$\{l_1: \mathbf{r} \} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \text{or} \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}$	B1ft			
	(7) (1) (8) (1)				
			[1]		
	$\overrightarrow{PB} = \overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$				
(c)	$PB = OB - OP = \begin{vmatrix} 3 \end{vmatrix} - \begin{vmatrix} 2 \end{vmatrix} = \begin{vmatrix} 1 \end{vmatrix} \text{ or } BP = \begin{vmatrix} -1 \end{vmatrix}$	M1			
	(8) (3) (5) (-5)				
	$\begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix}$ Applies dot product				
	$\begin{vmatrix} -1 & \bullet & 1 \end{vmatrix}$ formula between	3.61			
	$\{\cos A = \}$ $\overrightarrow{AB} \bullet \overrightarrow{PB}$ 1 (5) their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$	M1			
	$\{\cos \theta = \} \frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\left \overrightarrow{AB} \right \cdot \left \overrightarrow{PB} \right } = \frac{\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}}{\sqrt{(1)^2 + (-1)^2 + (1)^2} \cdot \sqrt{(-1)^2 + (1)^2 + (5)^2}} \begin{array}{c} \text{Applies dot product} \\ \text{formula between} \\ \text{their } \left(\overrightarrow{AB} \text{ or } \overrightarrow{BA} \right) \\ \text{and their } \left(\overrightarrow{PB} \text{ or } \overrightarrow{BP} \right). \end{array}$				
	(-2) $-1-1+5$ 3 1	-			
	$\{\cos\theta\} = \frac{1}{\sqrt{3} \cdot \sqrt{27}} = \frac{1}{9} = \frac{1}{3}$ Correct proof	A1 cso			
		1	[3]		
	$\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$, $\mathbf{p} \neq 0$, $\mathbf{d} \neq 0$ with				
(d)	either $\mathbf{p} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ or $\mathbf{d} = \text{their } \overline{AB}$, or a	M1			
	$\{l_2: \mathbf{r} = \} \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ either $\mathbf{p} = 0\mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$ or $\mathbf{d} = \text{their } \overline{AB}$, or a multiple of their \overline{AB} .				
	Correct vector equation.	A1 ft			
	•		[2]		
	(0) (1) (1) Either \overrightarrow{OP} + their \overrightarrow{AB}	3.61			
	$\overrightarrow{OC} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 4 \end{pmatrix}$ or $\overrightarrow{OD} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} - \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$: At least one set of coordinates are	M1			
(e)	$\begin{pmatrix} 3 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} 4 \end{pmatrix}$ At least one set of coordinates are	A1 ft			
	$\{C(1, 1, 4), D(-1, 3, 2)\}$ correct.				
	Both sets of coordinates are correct.	A1 ft	[2]		
(6)	h		[3]		
Wav 1	$\frac{h}{\sqrt{(-1)^2 + (1)^2 + (5)^2}} = \sin \theta$ $\frac{h}{\text{their } \overrightarrow{PB} } = \sin \theta$	M1			
., ., .,	·				
	$h = \sqrt{27}\sin(70.5) \left\{ = \sqrt{27}\frac{\sqrt{8}}{3} = 2\sqrt{6} = \text{awrt } 4.9 \right\}$ $\sqrt{27}\sin(70.5) \text{ or } \sqrt{27}.\frac{\sqrt{8}}{3}$	A1 oe			
	or $2\sqrt{6}$ or awrt 4.9 or equivalent	AI UC			
	Area $ABCD = \frac{1}{2} 2\sqrt{6} \left(\sqrt{3} + 2\sqrt{3} \right)$ $\frac{1}{2} (\text{their } h) (\text{their } AB + \text{their } CD)$	dM1			
	$\left\{ = \frac{1}{2} 2\sqrt{6} \left(3\sqrt{3} \right) = 3\sqrt{18} \right\} = \underline{9\sqrt{2}}$ 9\sqrt{2}	A1 cao			
			[4]		
			15		

	Question 8 Notes					
8. (a)	M1	Finding the difference (either way) between \overrightarrow{OB} and \overrightarrow{OA} .				
		If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference.				
	A1	$\begin{vmatrix} \mathbf{i} - \mathbf{j} + \mathbf{k} & \text{or} & \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \text{ or } (1, -1, 1) \text{ or benefit of the doubt } -1$				
		(1)				
		$\begin{pmatrix} -2 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \begin{pmatrix} -1 \end{pmatrix} \begin{pmatrix} 1 \end{pmatrix} \longrightarrow \longrightarrow$				
(b)	B1ft	$\{\mathbf{r}\} = \begin{pmatrix} -2\\4\\7 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix} \mathbf{or} \{\mathbf{r}\} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} + \lambda \begin{pmatrix} 1\\-1\\1 \end{pmatrix}, \text{ with } \overrightarrow{AB} \text{ or } \overrightarrow{BA} \text{ correctly followed through from (a).}$				
	Note	$\mathbf{r} = $ is not needed.				
(c)	M1	An attempt to find either the vector \overrightarrow{PB} or \overrightarrow{BP} .				
		If no "subtraction" seen, you can award M1 for 2 out of 3 correct components of the difference of the	ence.			
	M1	Applies dot product formula between their $(\overrightarrow{AB} \text{ or } \overrightarrow{BA})$ and their $(\overrightarrow{PB} \text{ or } \overrightarrow{BP})$.				
	A1	Obtains $\{\cos\theta\} = \frac{1}{3}$ by correct solution only.				
	Note	If candidate starts by applying $\frac{AB \bullet PB}{ }$ correctly (without reference to $\cos \theta =$)				
	1,000	If candidate starts by applying $\frac{\overrightarrow{AB} \bullet \overrightarrow{PB}}{\left \overrightarrow{AB} \right \cdot \left \overrightarrow{PB} \right }$ correctly (without reference to $\cos \theta =$)				
		they can gain both 2 nd M1 and A1 mark.				
	Note	Award the final A1 mark if candidate achieves $\{\cos\theta\} = \frac{1}{3}$ by either taking the dot product between				
		$\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$ or (ii) $\begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ 5 \end{pmatrix}$. Ignore if any of these vectors are labelled incorrectly.				
		$\begin{pmatrix} 1 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ -1 \end{pmatrix} \begin{pmatrix} 5 \\ -5 \end{pmatrix}$, and the great gr			
	Note	Award final A0, cso for those candidates who take the dot product between				
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$				
		(iii) $\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ or (iv) $\begin{pmatrix} -1 \\ 1 \\ -1 \end{pmatrix}$ and $\begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix}$				
		They will usually find $\{\cos\theta\} = -\frac{1}{3}$ or may fudge $\{\cos\theta\} = \frac{1}{3}$.				
		3				
		If these candidates give a convincing detailed explanation which must include reference to the direction of their vectors then this can be given A1 cso				
		of their rectals their this can be given it it est				
(c)	Altern	native Method 1: The Cosine Rule				
	→	\longrightarrow $\begin{pmatrix} -1 \\ 0 \end{pmatrix}$ $\begin{pmatrix} -1 \\ -1 \end{pmatrix}$ \longrightarrow $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$ Mark in the same way				
	PB =	$\overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1 \\ 3 \\ 8 \end{pmatrix} - \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \\ 5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1 \\ -1 \\ -5 \end{pmatrix}$ Mark in the same way as the main scheme. M1				
	Note \overline{I}	Note $ \overrightarrow{PB} = \sqrt{27}$, $ \overrightarrow{AB} = \sqrt{3}$ and $ \overrightarrow{PA} = \sqrt{24}$				
	$(\sqrt{24})$	$(\sqrt{24})^2 = (\sqrt{27})^2 + (\sqrt{3})^2 - 2(\sqrt{27})(\sqrt{3})\cos\theta$ Applies the cosine rule M ₁ oe				
	$\cos \theta$	$\theta = \frac{27 + 3 - 24}{18} = \frac{1}{3}$ Correct proof A1 cso				
		10 3	[3]			
	10 3					

8. (c)	Alternative Method 2: Right-Angled Trigonometry						
	$\overrightarrow{PB} = \overrightarrow{C}$	$\overrightarrow{OB} - \overrightarrow{OP} = \begin{pmatrix} -1\\3\\8 \end{pmatrix} - \begin{pmatrix} 0\\2\\3 \end{pmatrix} = \begin{pmatrix} -1\\1\\5 \end{pmatrix} \text{ or } \overrightarrow{BP} = \begin{pmatrix} 1\\-1\\-5 \end{pmatrix}$ Mark in the same way as the main scheme. M1					
	`	$(\sqrt{24})^2 + (\sqrt{3})^2 = (\sqrt{27})^2$ $(8 \bullet \overrightarrow{PA}) = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \bullet \begin{pmatrix} -2 \\ 2 \\ 4 \end{pmatrix} = -2 - 2 + 4 = 0$ Confirms $\triangle PAB$ is right-angled M1					
		$\cos\theta = \frac{AB}{PB} \Rightarrow \begin{cases} \cos\theta = \frac{\sqrt{3}}{\sqrt{27}} = \frac{1}{3} \end{cases}$ Correct proof A1 cso					
(d)	M1	Writing down a line in the form $\mathbf{p} + \lambda \mathbf{d}$ or $\mathbf{p} + \mu \mathbf{d}$ with either $\mathbf{a} = \begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix}$ or $\mathbf{d} = \text{their } \overrightarrow{AB} \mathbf{d} = \text{their } \overrightarrow{AB}$,					
		or a multiple of their \overrightarrow{AB} found in part (a).					
	A1ft	Writing $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mu \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$ or $\begin{pmatrix} 0 \\ 2 \\ 3 \end{pmatrix} + \mu \mathbf{d}$, where $\mathbf{d} = \text{their } \overrightarrow{AB}$ or a multiple of their \overrightarrow{AB} found in part (a).					
	Note	$\mathbf{r} = $ is not needed.					
	Note	Using the same scalar parameter as in part (b) is fine for A1.					
(e)	M1	Either \overrightarrow{OP} + their \overrightarrow{AB} or \overrightarrow{OP} - their \overrightarrow{AB} .					
	Note	This can be implied at least two out of three correct components for either their C or their D .					
	A1ft A1ft	At least one set of coordinates are correct. Ignore labelling of C , D Both sets of coordinates are correct. Ignore labelling of C , D					
	Note	You can follow through either or both accuracy marks in this part using their \overrightarrow{AB} from part (a).					
(f)	M1	Way 1: $\frac{h}{\text{their } \overline{PB} } = \sin \theta$					
		Way 2: Attempts $ \overrightarrow{PA} $ or $ \overrightarrow{CB} $					
		Way 3: Attempts $\frac{1}{2}$ (their PB)(their AB) $\sin \theta$					
	Note	Finding AD by itself is M0.					
	A1	Either					
		• $h = \sqrt{27} \sin(70.5)$ or $ \overrightarrow{PA} = \overrightarrow{CB} = \sqrt{24}$ or equivalent. (See Way 1 and Way 2)					
	or 1 F(F)						
		• the area of either triangle APB or APD or BDP = $\frac{1}{2}\sqrt{3}(3\sqrt{3})\sin(70.5)$ o.e. (See Way 3).					
	dM1	which is dependent on the 1 st M1 mark. A full method to find the area of trapezium <i>ABCD</i> . (See Way 1, Way 2 and Way 3).					
	A1 $9\sqrt{2}$ from a correct solution only.						
	Note A decimal answer of 12.7279 (without a correct exact answer) is A0.						