Cambridge O Level | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | CHEMISTRY 5070/22 Paper 2 Theory October/November 2023 1 hour 45 minutes You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do not use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### INFORMATION - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. ## **BLANK PAGE** [Total: 5] 1 Choose from the list of compounds to answer these questions. ammonia ethanol glucose magnesium chloride magnesium oxide methane nitrogen dioxide phosphorus(V) chloride poly(ethene) ## sodium bromide ## water Each compound may be used once, more than once or not at all. Identify the compound that: | [1] | |-----| | [1] | | | | [1] | | | | [1] | | | | [1] | | | | [1] | | | [2] | 2 This question is abo | ut metals | |------------------------|-----------| |------------------------|-----------| (a) Chromium is a transition element. Sodium is an element in Group I of the Periodic Table. State **two** physical properties of chromium that are different to those of sodium. | 1 | | |---|--| | | | | 2 | | (b) Deduce the number of protons and neutrons in the chromium atom shown. (c) Chromium(III) oxide, Cr_2O_3 , reacts with carbon and chlorine to produce chromium(III) chloride, $CrCl_3$, and carbon monoxide. Construct the symbol equation for this reaction. (d) Complete the diagram in Fig. 2.1 to show the electronic configuration of a sodium ion. Include the charge on the ion. Fig. 2.1 [2] (e) Table 2.1 shows the observations made when four different metals are heated in oxygen. Table 2.1 | metal | observations | |-----------|---| | lanthanum | forms a layer of oxide rapidly on the surface but does not burn | | mercury | does not form a layer of oxide on the surface | | nickel | forms a layer of oxide slowly on the surface but does not burn | | sodium | burns rapidly | | | | t the four metals in order of their reactivity. t the least reactive metal first. least reactive most reactive | | |----|------|--|----------| | | | | [1] | | f) | | uminium is used in food containers and overhead electrical cables because it is resistrosion. | stant to | | | (i) | Explain why aluminium is resistant to corrosion. | | | | | | | | | | | [2] | | | (ii) | State two other reasons why aluminium is used in overhead electrical cables. | | | | | 1 | | | | | 2 | | | | | | [2] | | | | [To | tal: 13] | - 3 A student investigates the reaction of large pieces of calcium carbonate with dilute hydrochloric acid at 25 °C. The hydrochloric acid is in excess. - (a) Complete the equation for this reaction by adding state symbols. $$CaCO_3(.....) + 2HCl(.....) \rightarrow CaCl_2(aq) + H_2O(.....) + CO_2(g)$$ [2] (b) Fig. 3.1 shows the volume of carbon dioxide gas released as the reaction proceeds. Fig. 3.1 (i) Deduce the volume of carbon dioxide gas released after 40 seconds. volume cm³ [1] (ii) The student repeats the experiment using the same mass of smaller pieces of calcium carbonate. All other conditions stay the same. Draw a line on the grid in Fig. 3.1 to show how the volume of carbon dioxide changes when smaller pieces of calcium carbonate are used. [2] | (c) | The student repeats the experiment at 20°C. | |-----|---| | | All other conditions stay the same. | | | Describe and explain, using collision theory, how the rate of reaction differs when a temperature of 20 °C is used. | | | | | | | | | | | | [2] | | (d) | A sample of carbon dioxide is put into a gas syringe. The end of the gas syringe is then blocked so that no gas can escape. | | | Explain, using kinetic particle theory, why increasing the pressure in the gas syringe decreases the volume of gas when the temperature stays the same. | | | | | | [1] | | | [Total: 8] | 4 | (a) | Cor | ncentrated aqueous magnesium iodide is electrolysed using graphite electrodes. | |-----|-----------|---| | | Pre | dict the product at each electrode. | | | ano | ode | | | cath | node | | | | [2 | | (b) | Mol | ten magnesium iodide is electrolysed using graphite electrodes. | | | | nstruct the ionic half-equation for the reaction at each electrode when molter
gnesium iodide is electrolysed. | | | ano | de | | | cath | node[2 | | (c) | Des | scribe a test for aqueous iodide ions. Include the observations for a positive result. | | (0) | | | | | test | | | | obs | ervations[2 | | (d) | lodi | de ions reduce manganese(IV) oxide, MnO_2 , to Mn^{2+} ions. | | | | $2I^-$ + MnO_2 + $4H^+$ \rightarrow Mn^{2+} + I_2 + $2H_2O$ | | | (i) | Explain, in terms of movement of electrons, how iodide ions act as a reducing agent in this reaction. | | | | | | | | [1 | | | \ | · | | | (ii) | State the name of the type of reaction that involves simultaneous oxidation and reduction | | | | [1 | (e) Phosphorus(III) iodide is produced when phosphorus reacts with iodine.Complete Fig. 4.1 to show the dot-and-cross diagram for a molecule of phosphorus(III) iodide. Show only the outer shell electrons. Fig. 4.1 [2] [Total: 10] [2] **5** (a) Fig. 5.1 shows the displayed formula of compound **A**. Fig. 5.1 | (i) | On Fig. 5.1, draw a circle around the functional group that reacts with aqueous bromine. [1] | |-------|--| | (ii) | Describe the colour change when excess compound ${\bf A}$ is added to a few drops of aqueous bromine in a test tube. | | | colour of aqueous bromine | | | colour after addition of compound A [2] | | (iii) | Deduce the molecular formula of compound A . | | | [1] | | (iv) | Compound A is a liquid at room temperature. | | | Describe the motion and separation of the particles in a liquid. | | | motion | [Total: 10] (b) Fig. 5.2 shows the structure of compound B. Fig. 5.2 Compound **B** is polymerised. Draw **two** repeat units of the polymer formed when compound **B** is polymerised. | | | [4] | |-----|--|-----| | (c) | Describe two environmental challenges caused by the disposal of plastics. | | | | 1 | | | | | | | | | | | | 2 | | | | | | | | | [2] | | | | | ## **BLANK PAGE** 6 | Stea | am reacts with carbon to produce carbon monoxide and hydrogen. | |------------|---| | | steam + carbon | | The | forward reaction is endothermic. | | (i) | Explain, in terms of bond making and bond breaking, why this reaction is endothermic. | | | | | | | | | | | | [2] | | (ii) | The transfer of thermal energy in a chemical reaction is called the enthalpy change. | | | Write the symbol for an enthalpy change. Include the sign for an endothermic enthalpy change. | | | [1] | | | bon monoxide, water and carbon dioxide are formed during the incomplete combustion of bon-containing fuels. | | (i) | Name one other substance formed during the incomplete combustion of carbon-containing fuels. | | | [1] | | (ii) | State one adverse effect of carbon monoxide. | | | [1] | | Hyd | rogen is used in a hydrogen-oxygen fuel cell. | | Des
eng | cribe two advantages of a hydrogen-oxygen fuel cell compared with a gasoline/petrol ine. | | 1 | | | | | | 2 | | | | [2] | | | [Total: 7] | | | (ii) Carcart (i) Hyd Des | | 7 | (a) | Dilute hy | /drochloric | acid | reacts | with | aqueous | sodium | carbonate | |---|-----|-----------|------------------|------|--------|----------|---------|---------|------------| | | (4) | Dilatori | , ai coi iici ic | aoia | louoto | ** ! [] | aqaccac | ocalani | darboriate | $$\mathrm{2HC}l \ + \ \mathrm{Na_2CO_3} \ \rightarrow \ \mathrm{2NaC}l \ + \ \mathrm{H_2O} \ + \ \mathrm{CO_2}$$ A student titrates $20.0\,\mathrm{cm^3}$ of $0.0250\,\mathrm{mol/dm^3}$ aqueous sodium carbonate with dilute hydrochloric acid using methyl orange as an indicator. A volume of $15.5\,\mathrm{cm^3}$ of dilute hydrochloric acid reacts exactly with the $0.0250\,\mathrm{mol/dm^3}$ aqueous sodium carbonate. Calculate the concentration, in mol/dm³, of the dilute hydrochloric acid. | | | concentration of dilute hydrochloric acid mol/dm ³ [| 3 | |-----|------|---|----| | (b) | (i) | State the colour of methyl orange in alkaline solution. | | | | | [| 1] | | | (ii) | Write the formula of the ion present in aqueous solutions of alkalis. | | | | | [| 1] | | (c) | | culate the volume, measured at r.t.p., of carbon dioxide produced, in cm ³ , when 2.65 g ium carbonate reacts with excess hydrochloric acid. | Of | | | | $2HCl + Na_2CO_2 \rightarrow 2NaCl + H_2O + CO_2$ | | volume of carbon dioxide cm³ [2] | (d) | Hyd | lrochloric acid is a strong acid. | | |-----|------|--|-----| | | Defi | ine the term strong in the phrase strong acid. | | | | | | [1] | | (e) | Oxio | des of nitrogen contribute to acid rain. | | | | (i) | State one other adverse effect of oxides of nitrogen. | | | | | | [1] | | | (ii) | Oxides of nitrogen are removed from car exhausts by catalytic converters. | | | | | Complete the symbol equation for the reaction that occurs in catalytic converters. | | | | | 2CO + 2NO → + | [2] | | | | [Total: | 11] | | 8 | (a) | The equation for the reaction of carbon monoxide with hydrogen at a high temperature in a | |---|-----|---| | | | closed container is shown. | $$\begin{array}{cccc} \mathsf{CO}(\mathsf{g}) & + & 2\mathsf{H}_2(\mathsf{g}) & \Longrightarrow & \mathsf{CH}_3\mathsf{OH}(\mathsf{g}) \\ & & \mathsf{methanol} \end{array}$$ The forward reaction is exothermic. | | (i) | Predict and explain the effect, if any, on the position of equilibrium when the pressure is increased and the temperature remains constant. | |-----|------|---| | | | | | | | [2] | | | (ii) | Predict and explain the effect, if any, on the position of equilibrium when the temperature is increased and the pressure remains constant. | | | | | | | | [1] | | (b) | Met | hanol reacts with ethanoic acid, CH ₃ COOH, to produce an ester. | | | Nar | ne the ester and draw its displayed formula. | | | nan | ne | | | disn | played formula | | C) | Methanol is a member of the alcohol homologous series. | |----|---| | | Describe two general characteristics of a homologous series. | | | 1 | | | | | | | | | 2 | | | | | | [2] | | | [Total: 7] | 9 (a) Table 9.1 shows the melting points and relative electrical conductivities of three elements. Table 9.1 | | calcium | carbon (diamond) | iodine | |---|---------|------------------|--------| | melting point /°C | 839 | 3550 | 114 | | relative electrical conductivity of solid | good | poor | poor | Use ideas about structure and bonding to explain: | | (i) | the difference in the melting points of diamond and iodine | | |-----|------|--|-----| [3] | | | (ii) | the difference in the electrical conductivities of calcium and iodine. | | | | | | | | | | | | | | | | [2] | | (b) | Dia | mond and graphite are different forms of carbon. | | | | Ехр | lain, in terms of its structure, why graphite is a lubricant. | | | | | | | | | | | | | | | | [2] | | (c) | A compound of sodium, 24.24% oxygen by mass. | | oxygen | contains | 11.62% | sodium, | 64.14% | iodine | and | |-----|--|--------------|---------|----------|--------|---------|--------|--------|-----| | | Deduce the empirical form | nula of this | compour | nd. | | | | | | empirical formula[2] [Total: 9] Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge. The Periodic Table of Elements | | III/ | 2
He | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | 118 | Og | oganesson
— | |----------|------|---------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | = | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | Ŗ | bromine
80 | 53 | н | iodine
127 | 85 | Αt | astatine
- | 117 | <u>s</u> | tennessine
- | | | 5 | | | 80 | 0 | oxygen
16 | 16 | S | sulfur
32 | 34 | Se | selenium
79 | 52 | Б | tellurium
128 | 84 | Ро | moloum
– | 116 | _ | livermorium
- | | | > | | | 7 | z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sp | antimony
122 | 83 | Ξ | bismuth
209 | 115 | Mc | moscovium
- | | | ≥ | | | 9 | ပ | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 90 | Sn | tin
119 | 82 | Ър | lead
207 | 114 | lΉ | flerovium
- | | | = | | | 5 | М | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | <i>1</i> 1 | thallium
204 | 113 | Z | nihonium
- | | | | | | | | | | | | 30 | Zu | zinc
65 | 48 | B | cadmium
112 | 80 | Ŗ | mercury
201 | 112 | ე | copemicium
- | | | | | | | | | | | | 29 | Cn | copper
64 | 47 | Ag | silver
108 | 62 | Αn | gold
197 | 111 | Rg | roentgenium
- | | Group | | | | | | | | | | 28 | ïZ | nickel
59 | 46 | Pd | palladium
106 | 78 | 풉 | platinum
195 | 110 | Ds | darmstadtium
- | |)
Dig | | | | | | | | | | 27 | රි | cobalt
59 | 45 | 格 | rhodium
103 | 77 | ٦ | iridium
192 | 109 | M | meitnerium
- | | | | - I | hydrogen
1 | | | | | | | 26 | Ь | iron
56 | 44 | Ru | ruthenium
101 | 9/ | Os | osmium
190 | 108 | ΗS | hassium
– | | | | | | | | | | | | 25 | Mn | manganese
55 | 43 | ပ | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
— | | | | | | | lod | ass | | | | 24 | ပ် | chromium
52 | 42 | Мо | molybdenum
96 | 74 | ≥ | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | qN | niobium
93 | 73 | ц | tantalum
181 | 105 | Db | dubnium
— | | | | | | | ato | rela | | | | 22 | ï | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | Ŗ | rutherfordium
- | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | Š | strontium
88 | 26 | Ba | barium
137 | 88 | Ra | radium
_ | | | _ | | | 3 | := | lithium
7 | 7 | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | & | rubidium
85 | 55 | S | caesium
133 | 87 | Ļ | francium
- | | 103
Lr
lawrencium | |---------------------------| | No
nobelium | | Md
mendelevium | | 100
Fm
fermium | | 99
ES
einsteinium | | 98
Cf
califomium | | 97
Bk
berkelium | | 96
Cm
curium | | 95
Am
americium | | 94
Pu
plutonium | | 93
Np
neptunium | | 92
U
uranium
238 | | 91 Pa protactinium 231 | | 90
Th | | 89
Ac
actinium | | | lanthanoids actinoids The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).