UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2008 question paper

5070 CHEMISTRY

5070/02

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

[2]

GCE O LEVEL – October/November 2008 5070 02	Page 2 Mark Scheme		Syllabus	Paper
		GCE O LEVEL – October/November 2008	5070	02

Section A

A1 (a) (i) P [1]
(ii) He [1]
(iii) Cl [1]
(iv) N/P/As [1]
(v) Ni [1]
(vi) S and O (both needed for 1 mark) ALLOW: N and O (1 mark) [1]

A2 (a) any two of:

carbon dioxide disappears or vaporises

ALLOW: carbon dioxide melts/carbon dioxide block decreases in size/hole in block gets deeper

black powder/black solid formed/black smuts/black fumes/sooty

ALLOW: black gas/black smoke

• white powder/white solid formed/white fumes

ALLOW: white gasbright light/flame

IGNORE: flame colour [2] NOTE: greyish fumes/solid/powder/gas = 2 marks

(b) to stop Mg reacting with air (or oxygen)/to stop side reactions/to stop air getting in NOT: to stop oxidation of magnesium/to increase rate of reaction

(c) low temperature/the cold(ness)/it is cold/it is -60 °C [1]

NOT: surface area/temperature

(d) $2 \times 24 \text{ g} \rightarrow 810 \text{ kJ}$ $2 \text{ g} \rightarrow 810 \times 2/(2 \times 24) =$ 33.75 (kJ)OR moles Mg = 2/24 = 0.083333

 $810 \times 0.083333/2 = 33.75$

correct answer without working scores 2 1 mark for use of moles i.e. 2/24 or 2×24

2 marks for correct answer

ALLOW: 33.8/34

33.7/34.0/33.6 (from rounding up 0.083333) = 1 mark ONLY

67.5 = 1 mark ONLY

www.dynamicpapers.com
Syllabus Paper
08 5070 02

	(e)	 magnesium in excess (no marks on its own) Mg 6/24 = 0.25 mol CO₂ 4.4/44 = 0.1mol (1 mark) 2 moles Mg needed to 1 of CO₂/recognition of this/division by two or 2:1 ratio shown (1 mark) OR 2 × 24 g magnesium → 44 g carbon dioxide (1 mark) so 6 g magnesium gives 6 × 44/48 = 5.5 g carbon dioxide (1 mark) (or reverse argument for carbon dioxide to calculate mass of magnesium) 	2]
	(f)	energy taken in to break bonds and energy given out in making bonds/ bond-breaking is endothermic and bond-making exothermic more energy released than absorbed more energy released in bond-making than absorbed in bond-breaking ORA = 2 marks	2]
		[Total: 10	0]
А3	(a)	methane/CH ₄ carbon dioxide/CO ₂ [2	2]
	(b)	correct structure of butanoic acid ALLOW: condensed structural formula or mixture of condensed and displayed formulae ALL hydrogen atoms must be shown.	1]
	(c)	(i) speeds up the reaction ALLOW: reduces time taken for the reaction (to complete) ALLOW: reduces activation energy ALLOW: makes oil quicker NOT: changes/alters rate of reaction	1]
		(ii) $C_{22}H_{22}O_2 + 26\frac{1}{2}O_2 \rightarrow 22CO_2 + 11H_2O$	
		or multiples (1 for correct reactants and products, 1 for balance) [EXAMPLE	2]
		[Total: 0	6]
A4	(a)	potassium chlorate is oxidant and P is reductant (1 mark) ALLOW: oxygen/chlorine is oxidant and P is reductant one of: potassium chlorate loses oxygen/ phosphorus removes oxygen from potassium chlorate/ phosphorus gains oxygen/ potassium chlorate/chlorine/chlorate gains electrons/ phosphorus loses electrons/ oxidation number of phosphorus increases oxidation number of chlorine (ALLOW: of potassium chlorate) decreases ALLOW: increases/decreases in oxidation numbers in correct direction (numbers need not be correct)	2]

Mark Scheme
GCE O LEVEL – October/November 2008

Page 3

www.dynamicpapers.com		pers.com
	Syllabus	Paper

Page 4	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2008	5070	02

(b) (i) $P_2O_5 + H_2O \rightarrow 2HPO_3$

[1]

ALLOW: multiples IGNORE: state symbols

(ii) effervescence/bubbling; NOT: carbon dioxide given off turns red/pink

[2]

(c) Sb_2S_3/S_3Sb_2 NOT: Sb_4S_6 [1]

[Total: 6]

A5 (a) (i) (thermal) decomposition

[1]

NOT: endothermic

(ii) it is (a) basic (oxide)/it is a base/it is (an) alkaline oxide

[1]

ALLOW: it is alkaline/an alkali (in solution)/has a high pH (when it reacts with water)/forms hydroxide ions (when reacts with water)

NOT: it contains hydroxide ions

NOT: answers about effect on plant growth

(b) (i) CaO + $H_2O \rightarrow Ca(OH)_2$ IGNORE: state symbols

[1]

(ii) any three of:

- pH increases inside beam ORA/
- carbon dioxide (in solution) is slightly acidic/
- on the surface CO₂ reacts with neutralises Ca(OH)₂ OR implication that pH neutral on the surface/
- reaction of carbon dioxide with calcium hydroxide reduces alkalinity (or lowers pH)/
- further inside (beam), less (or no) CO₂/little or no reaction (of carbon dioxide) with calcium hydroxide inside (beam)/
- crack allows carbon dioxide to enter the inside of the beam/
- near crack alkalinity less/pH lower OWTTE

[3]

Page 5 Mark Scheme		Syllabus	Paper
	GCE O LEVEL – October/November 2008	5070	02

(iii) moles HCl = 0.04 × 18/1000 = 7.2 × 10⁻⁴ (1 mark for showing 0.04 × 18/1000 (or 7.2 × 10⁻⁴ without working))

2 moles $HCl \equiv 1$ mole $Ca(OH)_2$ (or implication of this i.e. 3.6×10^{-4}) (1 mark for indication in any way of correct 2:1 ratio i.e. ½ value of answer to 1st part of calculation)

concentration $Ca(OH)_2 = 3.6 \times 10^{-4} \times 1000/25 = 0.0144 \text{ (mol/dm}^3\text{)}$ [3] correct answer without working = 3 marks apply error carried forward between the parts

ALLÓW: 0.014 NOT: 0.015

alternatively:

$$\frac{C_1 \times V_1}{C_2 \times V_2} = \frac{0.04 \times 18}{C_2 \times 25}$$
 (1 mark)

$$\frac{C_1 \times V_1}{C_2 \times V_2} = \frac{n_1}{n_2} \frac{0.04 \times 18}{C_2 \times 25} = \frac{2}{1}$$
 (2 marks)

Correct answer from this = (3rd mark)

[Total: 9]

[1]

[1]

[1]

[2]

[1]

A6 (a) (i) to kill bacteria/to kill micro-organisms/to kill germs

ALLOW: to disinfect the water/to sterilise the water

NOT: to kill viruses/to kill algae/to kill bugs

NOT: to clean the water/to make the water clear

(ii) sulphur dioxide/sulphite(s)/named sulphite

ALLOW: (calcium) hypochlorite//chlorate(I)/hydrogen peroxide

ALLOW: correct formulae NOT: bleaching powder

(b) two or more units polymerised with continuation bonds

ALLOW: correct structure with brackets, continuation bonds and 'n' at bottom right

(c) any two of:

- aluminium oxide dissolves (in sodium hydroxide)/aluminium oxide forms a solution (in sodium hydroxide)/aluminium oxide is soluble (in excess sodium hydroxide)/
- iron(III) oxide does not dissolve (in excess sodium hydroxide)/iron(III) oxide is insoluble (in excess sodium hydroxide)

NOT: iron(III) forms a precipitate

• separate by filtration/allowing iron oxide to settle and drawing off solution/decanting ALLOW: separate by centrifugation/use a centrifuge

FOR ALL 3 points IGNORE: names of solids/solutions formed

(d) dissolves the aluminium oxide/alumina or

lowers melting point of the melt/aluminium oxide mixture OWTTE

ALLOW: lowers the melting point of aluminium oxide

ALLOW: lowers the temperature at which electrolysis takes place

NOT: lowers the temperature (unqualified)

Page 6	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2008	5070	02

(e) (aluminium) covered with (aluminium) oxide layer/there is (aluminium) oxide on the surface ALLOW: protective layer formed by reaction with oxygen

NOT: wrong layer e.g. oxygen layer/layer of nitrogen

layer/aluminium oxide is unreactive/layer stops (chemical) reaction/protective layer formed [2]

NOT: aluminium is unreactive

[Total: 8]

Page 7	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2008	5070	02

Section B

B7 (a) reactants on left and products on right and products at lower level than reactants catalysed reaction curve lower than that for uncatalysed

ALLOW: two separate diagrams for catalysed and uncatalysed reactions as long as they are to the same scale

enthalpy change correctly shown in words or as ΔH

[3]

(b) (i) (fractional) distillation/fractionation/description of this i.e. gradually raising temperature of liquefied air and collecting fractions ALLOW: Linde process/double distillation

[1]

- (ii) any two of:
 - cracking/steam reforming/
 - high temperature/stated temperature ALLOW: 300–1000 °C/

NOT heat (unqualified)

use of catalyst

ALLOW: the following specified substances without the word catalyst aluminium oxide/zinc oxide/zeolites/copper/silicon dioxide/porous pot/correct symbols of formulae for these

ALLOW: the word catalyst with incorrect catalyst e.g. catalyst of copper sulphate [2]

- (c) (i) increase in pressure increases yield/moves the equilibrium to the right/increases the forward reaction/decreases the back reaction/more products formed/more ammonia formed OWTTE number of moles fewer on right (than left)/number of moles greater on left (than right)/ (gas) volume smaller on right/(gas) volume larger on left/increased pressure favours side with fewer moles or lower volume OWTTE [2]
 - (ii) decreases yield/moves the equilibrium to the left/more reactants/less ammonia formed OWTTE

(forward) reaction is exothermic/reaction gives out energy/back reaction is endothermic

[2]

[Total: 10]

Page 8	Mark Scheme		Paper
	GCE O LEVEL – October/November 2008	5070	02

B8 (a) (i) any two of:

• chromatography paper (with bottom of paper) in solvent

ALLOW: diagram showing this with solvent clearly labelled and paper dipping into solvent

ALLOW: named solvent

• spot of mixture put (on line)

ALLOW: diagram showing this

NOT: diagrams showing original spot/base line below solvent level

• allow solvent to move up paper/pigments are separated as they move (vertically) up the paper

ALLOW: separated pigments on a diagram vertically aligned

NOT: single pigments originating from different spots on the base line

(ii) distance spot moves ÷ distance of solvent front from base (starting) line

ALLOW: diagrams

ALLOW: distance moved by substance + distance moved by solvent

ALLOW: the ratio of the distance moved by the spot/substance to that moved by the solvent

NOT: the ratio of the distance moved by the solvent to that moved by the spot/substance

(b) (i) it/X is a reducing agent or it/X gets oxidised or potassium manganate(VII) oxidises X

NOT: reference to colour changes

NOT: potassium manganate(VII) is an oxidising agent (unqualified)

- (ii) it/X does not contain a (C=C) double bond/X is saturated
- (iii) it/X is a weak acid

ALLOW: **X** is a weaker acid (than hydrochloric)/**X** is weak/is not strong compared with hydrochloric acid [3]

NOT: X is not a strong acid

(c) (i)
$$C = \frac{2.67/12}{0.223}$$
 $H = \frac{0.220/1}{0.220}$ $O = \frac{7.11/16}{0.444}$ $\frac{(\div \text{ by correct A}_r)}{(\div \text{ by lowest figure})}$

simplest ratio = CHO_2 (any order)

(ii) $C_2H_2O_4$ [1]

[Total: 10]

[3]

[2]

[1]

14/14/14/	dvna	micha	narc	com
VV VV VV .	uyna	micpa	PCI 3.	COILL

Page 9 Mark Scheme		Syllabus	Paper
	GCE O LEVEL – October/November 2008	5070	02

B9 (a) breaking down/splitting up/decomposition

(of electrolyte/compound/substance)

by electricity/electric current

[1]

ALLOW: causing a chemical reaction to occur by an electric current

ALLOW: producing elements (from compounds) by using an electric current

(b) (i) sodium, chloride, hydrogen, hydroxide (ALLOW: hydroxyl) (all 4 needed)

ALLOW: Na⁺, C l^- , H⁺ and OH⁻

[1]

ALLOW: mixture of symbols and words

NOT: chlorine ions

(ii) $2Cl^- \rightarrow Cl_2 + 2e^-$

[1]

IGNORE: state symbols ALLOW 2e instead of $2e^-$ ALLOW: $2Cl^- - 2e^- \rightarrow Cl_2$

(iii) hydrogen ions form hydrogen (gas)/hydrogen ions removed

hydroxide/OH⁻ ions (remaining in solution) are alkaline OR hydroxide/OH⁻ ions give high pH/alkalinity caused by OH⁻ ions [2]

NOT: hydroxide ions remain in solution (must be a link to pH)

(c) in solution ions can move

NOT: ions are free

ALLOW: ions carry the charge

REJECT: if reference to electrons moving

ions cannot move in solid/ions held together (by strong forces)

[2]

IGNORE: electrons can't move for this mark

NOT: ions not present

(d) (i) reflux ALLOW: heat/high temperature/boil/warm

ALLOW: temperature range of 30-200 °C

NOT: distil

(sulphuric) acid catalyst/sulphuric acid

[2]

ALLOW: other named mineral acids/hydrogen ion catalyst

NOT: acid without qualification (otherwise confusion with the lactic acid)

NOT: catalyst (unqualified)

(ii) structure of lactic acid correct i.e. CH₃CHOHCO₂C₂H₅

[1]

ALLOW: RCO₂C₂H₅

REJECT: if OH group altered

[Total: 10]

	•	
www d	ynamicpapers.com	n
** ** ** . ~	, , , a, , , , opapo, o, oo,	

Page 10	Mark Scheme	Mark Scheme Syllabus	
	GCE O LEVEL – October/November 2008	5070	02

B10(a) proton number = 53 in both isotopes **AND** electron number 53 in both I-125 has 72 neutrons and I-131 has 78 neutrons (both needed)

[2]

(b) suitable reagent e.g. (aqueous) chlorine/(aqueous) bromine/nitric acid/(potassium) manganate(VII)/(potassium) permanganate/(sodium) dichromate/iron(III) ions

ALLOW: correct formulae solution turns brown

ALLOW: solution turns yellow/orange

[2]

IGNORE: colour of reagents at start

ALLOW: grey-black crystals or solid/grey crystals or solid/black crystals or solid

NOT: purple solution/iodine is formed

(c) $Zn + I_2 \rightarrow Zn^{2+} + 2I^-$

[2]

(1 mark for formulae, 1 mark for balance)

IGNORE: state symbols

(d) (i) this is a level of response question:

3 of the following points = 2 marks

2 of the following points = 1 mark

1 or 0 of these points = 0 mark

- high melting or boiling points/
- high density/
- form coloured compounds/

ALLOW: form coloured ions

NOT: they are coloured/they form coloured solutions

- form ions with different charges/different valencies/multiple valencies
- form complex ions/
- catalysis/they (or their compounds) are good catalysts

[2]

IGNORE: general metallic properties/hard

(ii) Ti_2O_3/O_3Ti_2

[1]

NOT: Ti₄O₆

(iii) $TiCl_4 + 2H_2O \rightarrow TiO_2 + 4HCl$

[1]

ALLOW: multiples

IGNORE: state symbols

[Total: 10]