

Cambridge International Examinations

Cambridge Ordinary Level

CANDIDATE NAME		
CENTRE NUMBER	CANDIDATE NUMBER	

457828091

CHEMISTRY 5070/42

Paper 4 Alternative to Practical

May/June 2016

1 hour

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

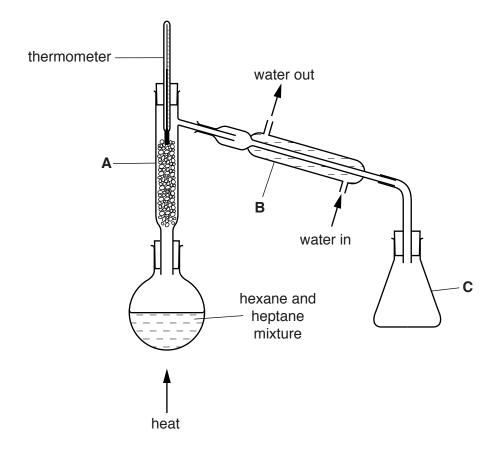
You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

Write your answers in the spaces provided in the Question Paper.


Electronic calculators may be used.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

1 A student separates hexane, C_6H_{14} , (b.p. 69°C) and heptane, C_7H_{16} , (b.p. 98°C) using the apparatus shown.

(a) Identify two errors in the student's apparatus.

1	
2	
	[2]

The errors were then corrected and the separation started.

(b) (i) Name apparatus A.

 [1]

(ii) What is the purpose of apparatus A?

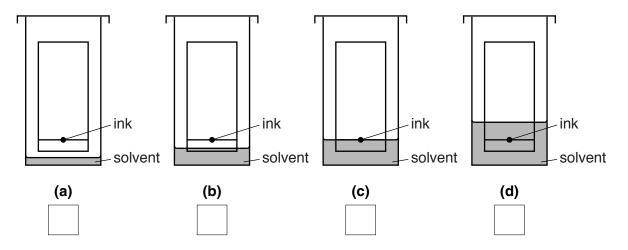
[1]

(iii) Name apparatus B.

 [1]	

(iv) What is the purpose of apparatus **B**?

(c)	(i)	What is the reading on the thermometer when the first few drops of liquid appear in	C?
			[1]
	(ii)	Name this liquid.	
			[1]
(d)	Sug	ggest which method should be used to heat the mixture and explain your choice.	
	met	thod	
	exp	planation	
			[2]
		[Total	: 10]


2	(a)	Give a test and observation to identify the presence of the nitrate ion, $NO_3^-(aq)$.
		test
		observation
		[4]
	(b)	Describe briefly how pure crystals of potassium nitrate may be made from aqueous potassium nitrate.
		[3]
	(c)	A few grams of potassium nitrate are added to water.
		A thermometer is used to measure the temperature of the liquid before and after the addition of potassium nitrate. The diagrams below show parts of the thermometer stem giving the two temperatures.
		F
		-30 -30
		-25 -25
		-2020 -
		temperature temperature before addition after addition
		(i) Complete the table and calculate the temperature change.
		temperature after potassium nitrate is added / °C
		temperature before potassium nitrate is added / °C
		change in temperature / °C [2]
		(ii) What type of process does this temperature change indicate?
		[1]

[Total: 10]

(a)				s with oxygen to form an oxide. find the formula of zinc oxide.	
	Son	ne zinc is placed in a previ	ousl	ly weighed crucible and reweighed.	
		ss of crucible + zinc ss of crucible		7.04 g 5.74 g	
	(i)	Calculate the mass of zin	c us	sed in the experiment.	
					g [1]
		crucible containing the zille is weighed.	nc is	s heated and zinc oxide is produced. T	he crucible with zinc
	mas	ss of crucible + zinc oxide	=	7.36 g	
	(ii)	Calculate the mass of zin	с ох	kide produced.	
					g [1]
	(iii)	Using your answers to (i) zinc.	anc	d (ii), calculate the mass of oxygen th	at combines with the
					g [1]
	(iv)	Using your answers to (i working. [A _r : Zn, 65; O, 16]	i) an	nd (iii), calculate the formula of zinc	oxide. Show all your
				formula	[2]
(b)	Whe	en zinc reacts with dilute h	ydro	ochloric acid, a gas is produced.	[2]
	Nan	ne the gas. Give a test and	obs	servation to identify the gas.	
	gas				
	test	and observation			[2]
					[Total: 7]

In questions 4 to 6 inclusive, place a tick (\checkmark) in the box against the correct answer.

4 Chromatography can be used to separate the dyes present in black ink.
Which diagram shows the correct arrangement at the beginning of the experiment?

[Total: 1]

5 A student is given a sample of damp soil which is known to be acidic. Which of the following substances may be used to neutralise the soil?

(a)	calcium hydroxide
(b)	sodium chloride

(- /		
(c)	potassium sulfate	

(d) zinc nitrate	
------------------	--

[Total: 1]

6 A small piece of calcium is added to a test-tube containing water coloured green by Universal Indicator.

A gas is given off and the indicator changes colour.

Which pair of observations is correct?

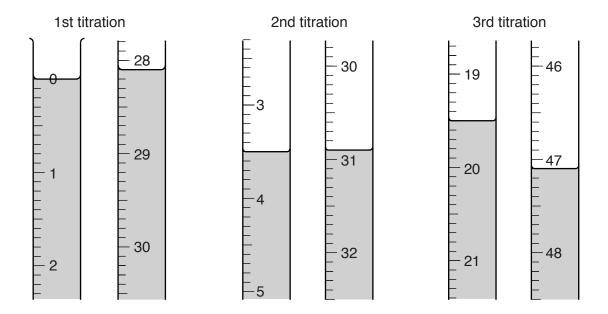
	final colour of indicator	test on gas	
(a)	purple	relights a glowing splint	
(b)	red	pops in a flame	
(c)	purple	pops in a flame	
(d)	red	relights a glowing splint	

[Total: 1]

- 7 A student is given a sample of an organic acid and asked to
 - determine its relative molecular mass,
 - deduce its molecular formula.

(a) What is the colour in the conical flask

The student titrates \mathbf{R} , an aqueous solution containing $8.00\,\mathrm{g/dm^3}$ of the organic acid, with \mathbf{S} , an aqueous solution containing $0.100\,\mathrm{mol/dm^3}$ of sodium hydroxide.


25.0 cm³ of **S** is transferred into a conical flask. A few drops of thymolphthalein indicator are added to the conical flask.

Thymolphthalein is colourless in acid solution and blue in alkaline solution.

R is put into a burette and added to the solution in the conical flask until an end-point is reached.

•	before R is added,	
•	at the end-point?	
		[1]

(b) The student does three titrations. The diagrams show parts of the burette with the liquid levels at the beginning and end of each titration.

Use these diagrams to complete the following table.

titration number	1	2	3
final burette reading / cm ³			
initial burette reading / cm ³			
volume of R used / cm ³			
best titration results (🗸)			

Summary

Tick (\checkmark) the best titration results.

(c) Calculate the number of moles of sodium hydroxide in $25.0\,\mathrm{cm}^3$ of **S**.

..... moles [1]

(d) Given that 1 mol of acid neutralises 1 mol of sodium hydroxide, use your answer in (c) to deduce the number of moles of the organic acid in the average volume of R.

..... moles [1]

(e) Calculate the number of moles of the acid in $1.00 \, \text{dm}^3$ of \mathbf{R} .

..... moles [1]

(f)	Using your answer to (e) and the information that $\bf R$ contains $8.00g/dm^3$ of the acid, calculate the relative molecular mass of the acid.
	[1]
(g)	The organic acid has the formula
	$C_nH_{2n+1}CO_2H$
	where n is a whole number.
	Using your answer to (f) , deduce the value of n and hence the molecular formula and the name for the organic acid. [A_r : H, 1; C, 12; O, 16]
	n =
	molecular formula
	name[4]

[Total: 13]

8 M is a compound which contains two ions. Complete the table by adding the observation in test (a), the conclusions in tests (b) and (c) and both the test and observation for test (d).

		test	observations	conclusions	
(a)	(a) M is dissolved in water and the resulting solution is divided into three parts for tests (b), (c) and (d).			M is not a compound of a transition metal.	[1
(b)	(i)	To the first part, aqueous sodium hydroxide is added until a change is seen.	A white precipitate forms.		
	(ii)	An excess of aqueous sodium hydroxide is added to the mixture from (i).	The precipitate dissolves.		[1]
(c)	(i)	To the second part, aqueous ammonia is added until a change is seen.	A white precipitate forms.		
	(ii)	An excess of aqueous ammonia is added to the mixture from (i).	The precipitate is insoluble.		[1]
(d)				M contains C <i>l</i> [−] ions.	
					[3

[Total: 7]

Question 9 begins on page 12.

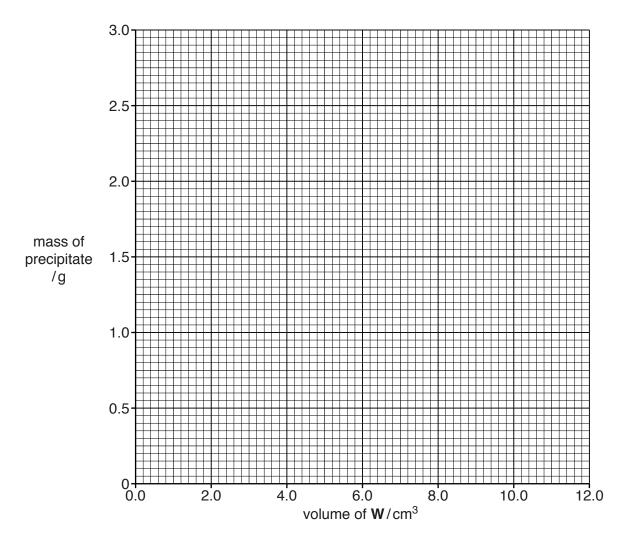
9 The reaction between aqueous barium chloride and dilute sulfuric acid produces a precipitate of barium sulfate.

$$BaCl_2(aq) + H_2SO_4(aq) \rightarrow 2HCl(aq) + BaSO_4(s)$$

(a) State the colour of this precipitate.

A series of experiments are done to find the mass of precipitate formed when different volumes of dilute sulfuric acid are added to a fixed volume of aqueous barium chloride. The precipitate formed is filtered, dried and transferred to a container.

Solution **V** is 1.20 mol/dm³ barium chloride. Solution **W** is sulfuric acid of unknown concentration.


The table below shows the results of these experiments.

(b) Complete the final column by calculating the mass of precipitate formed in each experiment.

volume of V /cm ³	volume of W /cm ³	mass of empty container/g	mass of container + precipitate/g	mass of precipitate /g
10.0	2.0	2.70	3.35	0.65
10.0	4.0	2.70	4.00	
10.0	6.0	2.70	4.65	
10.0	8.0	2.70	5.30	
10.0	10.0	2.70	5.50	
10.0	12.0	2.70	5.50	

[1]

(c) Plot the mass of precipitate against the volume of **W** on the grid. Draw **two** intersecting straight lines through the points.

[3]

(d) Use the data on your grid to deduce

(i) the volume of **W** that would produce 1.20 g of precipitate,

......cm³ [1

(ii) the maximum mass of precipitate that is produced,

...... g [1]

(iii) the minimum volume of W that reacts completely to produce the maximum mass in (ii).

..... cm³ [1]

(e)	Using your answer to (d)(iii) and the equation for the reaction, calculate the concentration of
	the sulfuric acid, W , used in the experiment.

$$\label{eq:back_lagrange} \mathsf{BaC}l_2(\mathsf{aq}) \ \ \, + \ \ \, \mathsf{H}_2\mathsf{SO}_4(\mathsf{aq}) \ \ \, \longrightarrow \ \ \, 2\mathsf{HC}l(\mathsf{aq}) \ \ \, + \ \ \, \mathsf{BaSO}_4(\mathsf{s})$$

..... mol/dm^3 [2]

[Total: 10]

15

BLANK PAGE

16

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.