# CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

# MARK SCHEME for the May/June 2013 series

## **5070 CHEMISTRY**

5070/21 Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| <b>1 A / A / A /</b> | ~\ \ /r      | $\sim 10$ | papers | $\sim$   |
|----------------------|--------------|-----------|--------|----------|
| WW WW WW             | (11/1        | 1711111   | DADELS | . ( :( ) |
| ** ** ** .           | <b>4</b> 9 1 | 141110    | papoid |          |
|                      |              |           |        |          |

| Page 2 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE O LEVEL – May/June 2013 | 5070     | 21    |

A1 (a) Iron(II) hydroxide (1) [1]

**(b)** Butane (1) [1]

(c) Propene (1) [1]

(d) Calcium carbonate (1) [1]

(e) Sulfur dioxide (1) [1]

(f) Sulfuric acid / sodium chloride (1) [1]

[Total: 6]

**A2 (a)** Any value in range 20–22 (1) [1]

**(b)** 
$$6H_2O + 6CO_2 \rightarrow C_6H_{12}O_6 + 6O_2$$
 (1) [1]

#### (c) ANY TWO FROM

Use of enzymes (1)

Chlorophyll / presence of chloroplasts (1)

Sunlight (1) **IGNORE** just light / sun / sunshine

(d) (i) Bond breaking absorbs energy **and** bond making releases energy / bond breaking is endothermic **and** bond making is exothermic (1)

More energy absorbed than released / less energy released than absorbed / endothermic energy change is greater than exothermic energy change / exothermic energy change is less than endothermic energy change (1)

(ii) Products level above and to the right of the reactants level (1)

Correct energy hump drawn and near vertical arrow labelled activation energy (or  $E_a$ ) from reactant level to energy maximum (1)

Correct labelled enthalpy change with near vertical arrow pointing upwards (1) [3]

[Total: 9]

[2]

www.dynamicpapers.com

| Page 3 Mark Scheme Syllabus Page |                             |          |       |
|----------------------------------|-----------------------------|----------|-------|
| Page 3                           | wark Scheme                 | Syllabus | Paper |
|                                  | GCE O LEVEL – May/June 2013 | 5070     | 21    |

**A3 (a) (i)** 
$$2KOH + H_2SO_4 \rightarrow K_2SO_4 + 2H_2O(1)$$
 [1]

(iii) Moles of KOH = 
$$\frac{24}{1000} \times 0.150 / 0.0036$$
 (1)  
Moles of H<sub>2</sub>SO<sub>4</sub> =  $\frac{0.0036}{2} / 0.0018$  (1)  
Concentration =  $\frac{0.0018}{0.025}$  = 0.072 (mol dm<sup>-3</sup>) (1)

(b) Use of nitric acid (1)
Add excess base to acid (and warm) (1)

Filter (to remove excess base) (1)

Evaporate to point of crystallisation / leave in warm place / heat then allow solution to cool (1)

[Total: 9]

[4]

(b) Same number of protons and electrons / because it has 12 protons and 12 electrons (1)

Protons are positive and electrons are negative / protons are +1 and electrons are -1 (1) [2]

(d) 
$$2-/-2(1)$$

[Total: 6]

www.dynamicpapers.com

| Page 4 | Page 4 Mark Scheme          |      | Paper |
|--------|-----------------------------|------|-------|
|        | GCE O LEVEL – May/June 2013 | 5070 | 21    |

| A5 (a) |                  |                     |                   |                     |                            |
|--------|------------------|---------------------|-------------------|---------------------|----------------------------|
|        |                  | N                   | Н                 | Cr                  | 0                          |
|        | Mole ratio       | 11.1 /              | 3.2 /             | 41.3<br>52          | 44.4<br>16                 |
|        |                  | 0.793               | 3.2               | 0.794               | 2.78                       |
|        | Simplified ratio | 0.793<br>0.793<br>/ | 3.2<br>0.793<br>/ | 0.794<br>0.793<br>/ | $\frac{2.78}{0.793}$ / 3.5 |
|        | ×2               | 2                   | 8                 | 2                   | 7                          |

Mole ratio line (1) Simplified ratio line (1) Idea of the  $\times$  2 (1) [3]

(b) Chromium (1) [1]

(c) X is an oxidising agent (1)

because oxidation number of iodine increases / iodide loses electrons / X gains electrons / oxidation number of Cr decreases (1) [2]

(d) (i)  $NH_4^+(1)$ [1]

(ii)  $Cr_2O_7^{2-}(1)$ [1]

(e) Nitrogen (1) [1]

[Total: 9]

| Page 5 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
| 90 0   | GCE O LEVEL – May/June 2013 | 5070     | 21    |

A6 (a) (i) Correct 'dot-and-cross' diagram with one pair of bonding electrons between O and Cl, four non-bonding electrons on O and six non-bonding electrons on each Cl (1) [1]

(ii) ANY TWO FROM

Simple molecular structure / small molecule (1)

Weak intermolecular forces have to be broken (1)

Little energy needed to break intermolecular force / intermolecular force is easy to overcome (1) [2]

**(b)**  $K^+$  2,8,8 (1)

 $0^{2-}$  2,8 (1)

**Alternatively** 

**ALLOW** correct charge on ion (1) and correct electronic structure (1) [2]

(c)  $H_2O + Cl_2O_7 \rightarrow 2HClO_4(1)$  [1]

[Total: 6]

[2]

### B7 (a) ANY TWO FROM

Dissolves (1)

Blue / green solution (1)

Fizzes / bubbles / effervescence (1)

**(b)**  $CuCO_3.Cu(OH)_2 + 4HCl \rightarrow 2CuCl_2 + CO_2 + 3H_2O$  (1)

Correct formulae (1)

Balancing (1) [2]

(c) Moles of  $CO_2$  / moles of  $CO_3^{2-} = 0.004$  (1)

 $M_{\rm r}$  of  ${\rm CO_3}^{2-}$  = 60 (1)

Mass of  $CO_3^{2-} = 0.24 g (1)$  [3]

| Page 6 | Page 6 Mark Scheme          |      | Paper |
|--------|-----------------------------|------|-------|
|        | GCE O LEVEL – May/June 2013 | 5070 | 21    |

(d) (i)  $CuCO_3.Cu(OH)_2 + C \rightarrow 2Cu + 2CO_2 + H_2O$ 

Correct formulae (1)

Balancing (1) [2]

#### (ii) ANY ONE FROM:

less energy used (in recycling than in extracting from the ore) (1)

reduces pollution / reduces waste / reduces trash / less of an eyesore / not an eyesore / less landfill / no landfill (1)

(less mining) saves more land for other uses / (less mining) saves land for more agriculture (1) [1]

[Total: 10]

**B8** (a) Group of substances with a general formula / formulae vary by CH<sub>2</sub> (1)

Have similar reactions / have similar chemical properties / have the same functional group (1) [2]

(b) Propanoic acid (1) [1]

(c) 
$$C_nH_{2n+1}CO_2H / C_nH_{2n+1}COOH (1)$$
 [1]

- (d) Melting point does not have a trend but boiling point does / melting point increase and decreases but boiling point only increases (1) [1]
- (e) Ethyl butanoate (1)

[2]

(f) (i)  $C_{15}H_{31}COOH \rightleftharpoons C_{15}H_{31}COO^- + H^+(1)$ 

Only partially dissociates / forms an equilibrium mixture / does not completely ionise (1)

(ii)  $C_{15}H_{31}COONa$  (1)

[Total: 10]

[4]

|    | www.dynamicpapers.com |      |                                                                                                                                                                                                       |                                                                                         |                      |                    |
|----|-----------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------|--------------------|
|    | Page 7                |      | ,                                                                                                                                                                                                     | Mark Scheme                                                                             | Syllabus             | Paper              |
|    |                       |      |                                                                                                                                                                                                       | GCE O LEVEL – May/June 2013                                                             | 5070                 | 21                 |
| В9 | (a)                   | (i)  | particles have more energy (1)  There are more successful collisions / more particles have energy above the activation energy / more effective collisions / more fruitful collisions / more energetic |                                                                                         |                      | above the          |
|    |                       |      | collis                                                                                                                                                                                                | sions more chance of successful collisions (1)                                          |                      | [2]                |
|    |                       | (ii) | Posi                                                                                                                                                                                                  | tion of equilibrium shifts to the left (1)                                              |                      |                    |
|    |                       |      | Beca                                                                                                                                                                                                  | ause the reaction is exothermic (1)                                                     |                      | [2]                |
|    |                       |      |                                                                                                                                                                                                       | (-)                                                                                     |                      | [-1                |
|    | (b)                   | (i)  |                                                                                                                                                                                                       | ction is slower because the particles are further apa<br>particles are less crowded (1) | art / rate decreas   | es because         |
|    |                       |      | Few<br>(1)                                                                                                                                                                                            | er collisions per second / particles collide less ofte                                  | en / lower collision | n frequency<br>[2] |
|    |                       | (ii) | Posi                                                                                                                                                                                                  | tion of equilibrium shifts to the left (1)                                              |                      |                    |
|    |                       |      |                                                                                                                                                                                                       |                                                                                         |                      |                    |
|    |                       |      | More                                                                                                                                                                                                  | e moles on the reactant side / fewer moles on the pr                                    | oduct side (1)       | [2]                |
|    |                       |      |                                                                                                                                                                                                       |                                                                                         |                      |                    |
|    | (c)                   | 450  | ) kJ (1                                                                                                                                                                                               | 1)                                                                                      |                      | [1]                |
|    | ` ,                   |      | •                                                                                                                                                                                                     | ,                                                                                       |                      |                    |
|    | , n                   |      |                                                                                                                                                                                                       |                                                                                         |                      |                    |
|    | (d)                   | Lov  | vers t                                                                                                                                                                                                | he activation energy / gives (alternative) route with I                                 | ower energy (1)      | [1]                |
|    | [Total: 10]           |      |                                                                                                                                                                                                       |                                                                                         |                      |                    |
|    |                       |      |                                                                                                                                                                                                       |                                                                                         |                      | [10tal. 10]        |

**(b)** Temperature does not change the mass (1)

Mass is proportional to the time / doubling time doubles mass (1)

Mass is proportional to the current / doubling current doubles mass (1)

Concentration does not change the mass (1)

(c) Ions cannot move in a solid / ions are in a fixed position in a solid (1)

lons can move in a solution (1) [2]

www.dynamicpapers.com

| Page 8 | Mark Scheme                 | Syllabus | Paper |
|--------|-----------------------------|----------|-------|
|        | GCE O LEVEL – May/June 2013 | 5070     | 21    |

(d) Ag<sup>+</sup>(aq) + Cl<sup>-</sup>(aq) → AgCl(s)
 Correct formulae and balancing (1)
 Correct state symbols – dependent on correct formulae (1)

[Total: 10]

[2]