UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

5070 CHEMISTRY

5070/21

Paper 2 (Theory), maximum raw mark 75

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

				WW	w.dynamicpap	ers.com			
	Pa	ige 2	2	Mark Scheme: Teachers' version	Syllabus	Paper			
				GCE O LEVEL – May/June 2012	5070	21			
A1	(a)	Am	monia	a (1)		[1]			
	(b)	Pro	pene	/ sulfur dioxide (1)		[1]			
	(c)	Oxy	ygen (1)		[1]			
	(d)	Ne	on (1)			[1]			
	(e)	Nitr	ogen	/ sulfur dioxide (1)		[1]			
	(f)	Chl	orine	(1)	[1				
	(g)	Nitrogen		/ carbon monoxide (1)		[1]			
						[Total: 7]			
A2	(a)	(i)	SO ₂	(1)		[1]			
		(ii)	Mole Emp	ratio sulfur : oxygen is 1.25 : 3.75 (1) irical formula is SO_3 (1)		[2]			
		(iii)	Wate	er/steam (1)		[1]			
		(iv)	lron(III)/Fe ³⁺ (1)		[1]			
	(b)	(i)	lron(II) hydroxide		[1]			
		(ii)	Fe ²⁺	$(aq) + 2OH^{-}(aq) \rightarrow Fe(OH)_{2}(s)$					
			Bala Corr	nced equation (1) ect state symbols – dependent on correct formulae	(1)	[2]			
						[Total: 8]			
A3	(a)	No cov	free e alent	electrons / no delocalised electrons / no sea of elect bonds / electrons cannot move (1)	trons / all electrons	are in [1]			
	(b)	Mo Alle Not Ign Not	lecule ow pa t atorr ercom ore w t brea	s gain (kinetic) energy (1) rticles move faster is gain energy e intermolecular forces / break attraction between eak forces between particles k covalent bonds	molecules (1)	[2]			

			www.dynamicpape								
	Pa	ige 3	3 Mark Scheme: Teachers' version Syllabus								
<u> </u>				GCE O LEVEL -	- May/June 20	012	5070	21			
	(c)		Correct stru	ucture – ignore inne	er shells (1)						
** **											
				× I	I						
				XX	××						
		Allo	ow all crosse	es or all dots				[1]			
	(d)	(i)	At⁻ (1)					[1]			
		(ii)	element	colour	state						
		.,	Cl ₂		gas						
			\mathbf{I}_2	grey/black	liquia						
		Correct states (1) Correct colour (1) Allow red / brown for bromine									
		(iii)	Black solid	/dark grey solid (1))			[1]			
	(e)	(i)	(colourless	to) yellow solution	straw solution	n/brown sol	ution/dark grey s	olid (1) [1]			
		(ii)	Cl₂ + 2I ⁻ → Ignore stat	$I_2 + 2Cl^-$ e symbols				[1]			
	(f)	Astatine is less reactive than iodine / astatine is less oxidising that iodine / iodide is a b									
		red Ign	ucing agent ore referenc	than astatide (1) the to reactivity series	es			[1]			
								[Total: 11]			
A 4	(a)	(i)	ion	electron configuration	protons	neutron	S				
			$^{24}_{12}Mg^{2+}$	2.8	12	12					
			$^{16}_{8}O^{2-}$	2.8	8	8					
			Electron co Numbers o Numbers o	nfigurations (1) f protons (1) f neutrons (1)				[3]			
		(;;)	Magnosium	losos two clostror	e and ovugen	aging two	lactrone (two aloc	trons			
	transferred from magnesium to oxygen (1)										

				WW	/w.dynamicpa	pers.com			
	Pa	ge 4		Mark Scheme: Teachers' version	Syllabus	Paper			
				GCE O LEVEL – May/June 2012	5070	21			
	(b)	Mai Not larg har bre Ign	ny (el t inter t cova ge am d to b ak the ore la ow str	ectrostatic) attractions between ions / many (ionic) molecular forces alent bonds for the first mark nount of energy to separate the ions/needs lots of e preak (ionic) bonds/high temperature needed to bre e ionic lattice/bonds are strong (1) arge amount of energy to break forces rong forces of attraction between ions	bonds / giant struc energy to break the eak (ionic) bonds/l	cture (1) e (ionic) bonds/ ots of energy to [2]			
	(c)	Use of any aqueous sulfate including dilute sulfuric acid (1) Filter reaction mixture (1) Wash residue with water (1) Air dry residue/put residue into oven (1)							
						FT () (0)			
						[lotal: 10]			
A5	(a)	Co	pper,	nickel, iron and magnesium (1)		[1]			
	(b)	Any Pin (Blu Alle tem	y two k solid ue sol ow the operat	from: d (1) lution) becomes colourless/becomes pale green (1 e blue colour becomes paler ture increases (1))	[2]			
	(c)	(i)	Exot	thermic (1)		[1]			
		(ii)	3Cu ² Igno	$^{2+} + 2Al \rightarrow 2Al^{3+} + 3Cu$ ore state symbols		[1]			
	(d)	(Su Wh not	irface ich do allow) layer of aluminium oxide (1) bes not flake off/acts as a protective barrier/which water or air to reach surface of aluminium (1)	is impermeable to	water/does [2]			
	(e)	Mol Ma: Alle	les of ss of <i>i</i> ow ar	Mo = 10417 (1) A l = 562500 g/0.5625 tonnes (1) nswer to 2 sig figs up to calculator value		[2]			
						[Total: 9]			
B6	(a)	Na(Allo	C1/Na ow Na	a₂SO₄/KC1/K₂SO₄/CaC1₂/CaSO₄/MgC1₂/MgSO₄(aHCO₃/KHCO₃/Ca(HCO₃)₂/Mg(HCO₃)₂	1)	[1]			
	(b)	0.0	276 (*	1)		[1]			

				www.dynamicpapers.com										<u>ו</u>
	Ра	ge 5		Mark Scheme: Teachers' version Syllabus Pa							Paper	r		
	(c)	Mole Mole Mas	es of es in s of <i>i</i>	⁷ C <i>l</i> [−] in <i>²</i> 25 cm ³ AgC <i>l</i> =	GCE 0 I dm ³ = 0 = 0.0134 1.92g (1	<u>LEVE</u> .535/r ⊦(1))	<u>L — ма</u> nass in	9/Jun 25 cr	n ³ = 0.4	<u>2</u> 475g (1))	5070	21_	[3]
	(d)	Des Allo	alina w dis	ition / re stillatior	verse os	mosis	(1)							[1]
	(e)	(i)	OH⁻ pH = solut Allo `	(aq) (1 = 7.9 inc tions (1 w seaw) licates al) ater is al	kaline, kaline,	/pH ab/ /seawa	ove 7 ater ha	is alka as a p⊦	Iline/this I above	s ion is 7	present	in all alkaline	[2]
		(ii)	Add Allo Idea	univers w use c of mate	al indicat of pH indi ching col	tor/pH cator our ag	(indica ainst a	ator) p pH ch	oaper (* nart/ide	1) ea that tl	he colo	ur indica	ites the pH (1)	[2]
					Jinig con	our ag	aniora	p1101						[-]
													[Tota	l: 10]
B7	(a)	Any Sam Sam Not Allo grad	two ne ge ne fui a gro w ha latior	from eneral fo nctional oup of e ave sam n of phy	ormula/m group/s lements e reactic sical pro	nember imilar ons perties	rs vary chemic ; (1)	by a (al pro	CH ₂ group of the second seco	oup (1) ; (1)				[1]
	(b)	Buta Allo	anoic w me	acid (1) ethylpro) panoic a	icid								[1]
	(c)	Allo	w OI	H in the	H - (1) structure	H - C- H	H 	—c	// ⁰ \o_	—Н				[1]
	(d)	C ₇ H Allo	₁₄O₂ ₩ C₀	(1) ₅H ₁₃ CO0	ЭН									[1]
	(e)	Boili And melt poin	ng p ing p t doe	oints all point inc	increase rease an how a tre	e / boili id decr end / m	ing poir reases , nelting p	nts sh / melt points	ows a ing poi fluctua	trend nt is irre ate (1)	gular d	own the	series / meltin	g [1]

										WW	v.dynan	nicpape	ers.com
Page 6				N	Aark Sc	heme:	Teach	ers' ve	sion		Syllab	us	Paper
					GCE O	LEVEL	. – Мау	June 2	2012		5070)	21
(f) Any two from strong acid fully dissociates and weak acid partially dissociates (1)								es (1)				
	ł	$HCl \rightarrow H^{+} + Cl^{-}(1)$ $CH_{3}COOH \Rightarrow H^{+} + CH_{3}COO^{-}(1)$											
	I	Ignore state symbols Ignore incorrect equations									[2		
(g	g) (I) CaCO ₃ (s) + 2CH ₃ COOH(aq) → Ca(CH ₃ COO) ₂ (aq) + H ₂ O(I) + CO ₂ (g) Correct equation (1)											
	(Corre	ect st	tate sym	bols – d	lepende	ent on f	ormula	(1)				[2
													[Total: 10
38 (a	a) ((i) 1	10 (1)									[1
(t	(c 	 In solid ions cannot move/no free ions (1) Ignore electrons cannot move Not electrons can move In solution ions can move/free ions (1) 											
		Allov	v pai	rticles ca	an move	in solu	ition bu	t not in	a solid				[2
(0	 (c) anode equation involves oxidation since electrons are lost/hydroxide ion is oxidised it loses electrons/oxygen is oxidised because its oxidation increases (1) Note Must be a clear link between the equation, gain and loss of electrons and oxid 								dised because				
	reduction. Ignore wrong oxidation numbers cathode equation involves reduction since electrons are gained/wat						ed/water umber rec	is reduce	ed because it				
	2	ganne			Jarogor			Jourge					·
(0	d) (b	(i) E #	Bond Allov ess e	l breakin v bond f energy is	g takes orming i s release	in ener s exoth ed than	gy and ermic a taken	bond fo and bor in (1)	orming d breal	release king is e	es energy endothern	(1) nic	[2
	(i	ii) N	Nole	s of oxy	gen = 10	04.2 (1)							
		Ν	Nole	s of wate	er = 208	.3 (1)							
		Ν	Mass	s of wate	r = 375() g (1)							[3
													[Total: 10

B9 (a) Position of equilibrium moves to the right/shifts forward/shifts towards the products / forward reaction favoured (1) because the (forward) reaction is endothermic (1) [2]

	WW	/w.dynamicpaj	pers.com
Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE O LEVEL – May/June 2012	5070	21
(b) Speed in because volume/ more col	creases particles are more crowded/more concentrated (pa particles are closer together (1) lisions per second/more chance of collision/more	articles) /more pa frequent collisions	articles per unit
(c) Any two Increase Allow re Allows re Allow re so saves	from: s rate of reaction (1) duces the reaction time eaction to take place at a lower temperature/saves duces the activation energy e energy resources (1)	energy (1)	[2]
(d) Moles of Energy =	hydrogen = 50 0000 (1) = 35 000 000 kJ (1)		[2]
(e) unsatura High pre Allow ur	ted fat (1) ssure/nickel catalyst (1) saturated oil/fats with a carbon-carbon double bor	nd	[2]
			[Total: 10]