

Cambridge International Examinations Cambridge Ordinary Level

PHYSICS
Paper 2 Theory
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

www.dynamicpapers.com

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2016	5054	21

Section A

1	(a)	vel	ocity/it has a direction/is a vector	B1	
	(b)	(i)	(<i>F</i> =) <i>ma</i> or 800 × 1.5 1200 N	C1 A1	
		(ii)	friction/air resistance acts on car opposes force due to engine	B1 B1	
		(iii)	$(\Delta v =)at \text{ or } 1.5 \times 4.0 \text{ or } 6.0$ 31 m/s	C1 A1	[7]
2	(a)	260) N	B1	
	(b)	(i)	for a body in equilibrium (total) clockwise moment = (total) anticlockwise moment	B1 B1	
		(ii)	$F_1d_1 = F_2d_2$ or 260×0.35 or 91 or $F \times 0.65$ $260 \times 0.35 = F \times 0.65$ or $260 \times 0.35/0.65$ or $91 = F \times 0.65$ or $91/0.65$ 140 N	C1 C1 A1	[6]
3	(a)	che	emical (potential energy)	B1	
	(b)	(i)	non-renewable and oil/it is not replaced/will run out	B1	
		(ii)	acid rain ${f or}$ produces ${\sf CO_2}$ ${f or}$ warms lakes/rivers/sea ${f or}$ global warming ${f or}$ greenhouse effect	B1	
	(c)	(i)	useful energy output / (total) energy input or power for energy twice	B1	
		(ii)	1 1.9 × 10 ⁹ /0.38 or 1.9 × 10 ⁹ × 100/38 5.0 × 10 ⁹ W 2 ($E =)Pt$ or 0.62 × 5.0 × 10 ⁹ × 2.0 (× 3600) or (5.0 – 1.9) × 10 ⁹ etc. 2.2 × 10 ¹³ J	C1 A1 C1 A1	[8]
4	(a)		allest angle for total internal reflection or angle for refraction along surface gle of <u>incidence</u> in (optically) <u>denser</u> medium	B1 B1	
	(b)	sec	tical ray continues undeviated conditions are the	B1 B1 B1	[5]

www.dynamicpapers.com
Syllabus Paper
2016 5054 21

Paper

5	(a)		mber of oscillations/vibrations/wavelengths/compressions/ efactions/cycles per second/unit time	B1	
	(b)	(i)	$(\lambda =)c/f$ or 330/2200 0.15 m	C1 A1	
		(ii)	1 no change		
			and 2 increases	B1	
	(c)	(i)	 loudspeaker vibrates/oscillates/moves to and fro (and collides with molecules) compressions and rarefactions/molecules vibrate/longitudinal wave vibration/oscillation/energy passed on 	B1 B1 B1	
		(ii)	fewer/no molecules/particles and less/no energy/vibration transferred	B1	[8]
6	(a)	(i)	X N-pole Y S-pole and Z N-pole	B1 B1	
		(ii)	they touch/move towards each other and opposite poles attract	B1	
	(b)	nuc	v sensible use: starting-motor circuit; with a logic gate; clear power station responding explanation: current too large for dash-board switch; rent too small to power device; too dangerous to reach switch	B1 B1	[5]
7	(a)	(i)	supplies the (mains) e.m.f./voltage	B1	
		(ii)	to complete the circuit/is at 0 V	B1	
	(b)	(i)	the circuit/supply is cut/broken or current stops fuse melts/blows/burns	B1 B1	
		(ii)	live wire when it cuts the circuit/melts no part of the appliance is live/no shock	B1 B1	[6]
					[45]

Mark Scheme

Cambridge O Level – October/November 2016

Page 3

www.dynamicpapers.com

Page 4	Mark Scheme	Syllabi	us Paper
	Cambridge O Level – October/November 2016	5054	21

Section B

8	(a)	(i)	11 protons and 11 electrons 13 neutrons electrons in orbit/surrounding nucleus or neutrons and protons in nucleus	B1 B1 B1	
		(ii)	one more neutron (in sodium-24) or one fewer neutron in sodium-23	B1	[4]
	(b)	(i)	electron	B1	
		(ii)	$_{-1}^{0}(eta)$ cao	В1	
			²⁴ (Mg)	В1	
			₁₂ (Mg)	В1	[4]
	(c)	ele	ctromagnetic (radiation/rays/waves)	M1	
	` ,	(ve	ry) high frequency/energy or (very) short wavelength	A1	[2]
	(d)	(i)	path curving upwards	B1	
		(ii)	path continues in straight line	B1	
		(iii)	beta-particle charged or gamma-ray uncharged	B1	[3]
		(,	Total particle charges of gamma ray amenanges		[~]
	(e)		g enough ake measurements or so the body is not irradiated for long	B1 B1	[2]
					[15]
9	(a)	(i)	magnetic field mentioned alternating / changing magnetic field	B1 B1	
			current/voltage/e.m.f. induced (in secondary coil)	B1	
			\sim	5.4	
		(ii)	diada	B1	[5]
			diode	B1	[5]
	(h)	(i)	work done/energy transferred per unit charge	M1	
	(~)	(')	electrical energy to other forms or for whole circuit or property of supply	A1	

www.dynamicpapers.com

	www.dynamicpapers.com					
Page 5		5	Mark Scheme	Syllabus	Pap	
			Cambridge O Level – October/November 2016	5054	2	1
		(ii)	1 1.3 V 2 (I =)V/R or 1.3/5.2 0.25 A 3 (Q =)It or 0.25 × 1.5 × 3600 or 0.25 × 1.5 0.25 × 1.5 × 3600 or 0.37/0.375/0.38 1300/1350/1400 C		B1 C1 A1 C1 C1 A1	[8]
	(c)	•	stic/casing is an (electrical) insulator shock possible		M1 A1	[2] [15]
10	(a)	(i)	molecules/they close together or small gaps between molecules		B1	
		(ii)	molecules / they exert large (repulsive) forces		B1	[2]
	(b)	(i)	$(V =)m/\rho$ or $680/0.85$ 800 cm^3 or $8.0 \times 10^{-4} \text{ m}^3$		C1 A1	
		(ii)	 molecules vibrate collide with neighbours or collide with electrons transfer vibration/energy electrons travel through metal heated/hot oil expands/less dense rises convection current/circulation established any suitable named insulator and it is a poor conductor 	al	B1 B1 B1 B1 B1 B1	[9]
	(c)	(i)	temperature at which (liquid) vaporises/becomes gas/steam		B1	
		(ii)	(Q =)mc ΔT or $680 \times 2.0 \times (260 - 20)$ or $680 \times 2.0 \times 240$ 3.3×10^5 J		C1 A1	
		(iii)	heat supplied to pan or heat lost to air/surroundings		B1	[4] [15]