Cambridge International Examinations

Cambridge Ordinary Level

PHYSICS

5054/22

Paper 2 Theory
May/June 2016
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.
Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2016	5054	22

1 (a) mark at a time between 4.0 and 7.5 seconds
(b) $(\mathrm{a}=)(\mathrm{v}-\mathrm{u}) / \mathrm{t}$ numerical or algebraic
or ($\mathrm{a}=$) gradient of graph stated
$2.5 \mathrm{~m} / \mathrm{s}^{2}$
(c) forward force and backward force clear B1 equal forces (in horizontal direction) B1
or no resultant force
or forces cancel/balance/in equilibrium

2 (a) ($\mathrm{PE}=$) mgh or Fd or 5×3.5
(b) (i) (efficiency = useful) energy output/energy input B1 in any form but all three quantities must be mentioned if efficiency is not the subject of the equation
$\begin{array}{ll}\text { (ii) } \begin{array}{ll}17.5 / 0.65 \text { or } 17.5 / 65 & \text { C1 } \\ \text { or } 0.65 / 65=(\text { a } / \text { energy input } \\ 26.9 \mathrm{~J} \text { or } 27 \mathrm{~J}\end{array} & \text { A1 }\end{array}$
(c) due to friction (in bearings of motor)
or due to (electrical) resistance (in motor)
or air resistance acts
or thermal energy/heat produced/lost (in resistance of motor/due to friction)

3 (a) (i) C M1
(ii) data quoted to prove stretches more at end A1 or extensions/changes in length increase/are not the same (at higher loads)
(iii) 4.5 cm
B1
(b) (tie rock to spring A)

- find weight/force/newtons using length or extension and graph or match readings (in table)
- find known weight/mass/force/ N that gives same extension of spring
- use of proportionality with length or extension
- extension (incm)/1.6
(mass =) weight/g B1
or weight/gravitational field (strength)

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2016	5054	22

4 (a) steam
or (water) vapour
or water in gaseous form
(b) $(E=) \mathrm{mL}$ numerical or algebraic
or $52000-6000$ or $46000(\mathrm{~J})$ seen
(52000-6000)/20 or 46000/20
$2300 \mathrm{~J} / \mathrm{g}$ or $2.3 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
(c) fast moving/energetic molecules escape/evaporate/break bonds/become gas
leaving slow(er) molecules/less energetic molecules
or reducing average (kinetic) energy (of molecules or liquid)

5 (a) (i) long-sight or far-sight or hypermetropia
(ii) rays do not come together (on back of eye)
or rays do not converge (on retina)
or it/the image is not formed on retina/back of eye
or it/the image is formed behind retina/back of eye
(b) (i) lens between rays and eyeball and a converging lens shown B1
(ii) converging or convex B1

6 (a) (i) red B1
(ii) blue B1
(b) ANY 2 from (the use must agree with the type) B4

Microwaves	B1
use - satellite television, telephone, mobile/cell phones;	B1
cooking, heating in a microwave oven, television	
remote, radar, communication	

X(-rays)
B1
use - hospital use in medical imaging or security imaging, killing cancerous cells,
and engineering applications such as detecting cracks in metal, crystallography
gamma (rays)
B1
use - medical treatment in killing cancerous cells, and engineering applications
B1
such as detecting cracks in metal, sterilisation, tracer applications, radiotherapy

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2016	5054	22

7 (a) any insulator, e.g. perspex, plastic, nylon, rubber
(b) top of P shows a net negative charge with some negative charges under rod B1 bottom of P has equal number of positive charges B1
(c) (i) clear net negative charge on P B1 and (net) negative charges above or at middle line
(ii) 1 negative (charges)/ electrons flow to earth B1 or (P) becomes neutral

2 charges spread over P
8 (a) current/a.c (in primary coil) creates magnetic field B1 or current/a.c magnetises iron changing magnetic field (in secondary)B1

(b) it/secondary has less turns (than primary)
B1

or primary has more turns (than secondary)

or (some) flux escapes
$\begin{array}{ll}\text { (c) (steel is) a permanent magnet } & \text { B1 } \\ \text { or weaker fields produced } \\ \text { or (steel) difficult to magnetise / demagnetise } \\ \text { or (steel) is a hard magnetic material } & \end{array}$
$\begin{array}{ll}\text { (d) passes current/charge in one direction } & \text { B1 } \\ \text { or has high resistance/is an insulator when current in } \\ \text { one direction/reverse biased } & \end{array}$

9 (a) (amount of) energy/work (dissipated by source) M1 by unit charge (around a circuit) A1
$\begin{array}{ll}\text { (b) (i) } 1 \begin{array}{l}\text { they are the same } \\ \text { or } I_{\mathrm{B}}=I_{1}=I_{2}\end{array} & \text { B1 }\end{array}$
$2 E=V_{1}+V_{2} \quad$ B1
(ii) (I=)V/R in any form algebraic or numerical C1 0.25 A A1
(iii) $4.5 \mathrm{~V} \quad \mathrm{~B} 1$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2016	5054	22

(c) current is (directly) proportional to voltage or voltage/current is a constant law holds for constant physical conditions/

```
(d) (i) (directly) proportional
\[
\text { or }(R) \propto 1
\]
```

(ii) inversely proportional B1 or $(R) \propto 1 / A$
(e) $1^{\text {st }}$ band orange B1 $2^{\text {nd }}$ and $3^{\text {rd }}$ bands both black B1

10 (a) (i) B-anode B1
D - filament or heater B1
E and $F-Y$ plates or X plates in either order B1
(ii) 1 attract electrons or gives electrons speed/K.E. B1

2 heats up cathode B1
or gives electrons energy to escape (metal/cathode) or causes/allows thermionic emission
$\begin{array}{ll}\text { (iii) } \begin{array}{l}\text { kinetic energy to light } \\ \text { or electrical energy to light }\end{array} & \text { B1 }\end{array}$
(iv) voltage/charge is applied to the X-plates/vertical plates B1 or turn on time base
(steadily) increasing voltage / charge applied to plate(s)
B1
or saw tooth voltage applied
or electrons attracted/repelled by plate(s) or by the electric field between them
(b) (i) $11(.0) \vee$ B1

2 one wave 1.3-1.4 squares or 3 waves in 4 squares C1 $2.6-2.8 \mathrm{~ms}$ A1
3 ($\mathrm{f}=$) 1/T numerical or algebraic C1
$345-400 \mathrm{~Hz}$ A1
(ii) smaller amplitude shown B1
larger period shown B1

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge O Level - May/June 2016	5054	22

11 (a) (nucleus/nuclide/atom) with same number of protons
(b) (i) 2 B1
(ii) neutron B1
(iii) 2 B1
(iv) 4 B1
(c) nuclei repel B1
or like / positive charges repel
(needs) high kinetic energy/speed (to overcome repulsion)
(d) ANY 3 lines from B3
(dust/gas) collapses/comes together/clusters/condenses
gravitational attraction or gravity mentioned
temperature rises or KE (dust/gas) increases B1
(nuclear) fusion occurs B1
equilibrium established as radiation pressure/outward
force balances inward force
(e) (i) time for a quantity to halve C1
time for (radio)activity / count rate/ number of atoms / number of nuclei to halve A1
(ii) any relevant halving seen, e.g. 16000/2 C1
1000 A1

