

Mark Scheme (Results)

January 2016

Pearson Edexcel International GCSE Mathematics A (4MAO) Paper 3H

Pearson Edexcel Certificate Mathematics A (KMAO) Paper 3H

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code UG043259
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded.
 Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme.
 - Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Types of mark

- o M marks: method marks
- o A marks: accuracy marks
- B marks: unconditional accuracy marks (independent of M marks)

Abbreviations

- o cao correct answer only
- o ft follow through
- isw ignore subsequent working
- o SC special case
- o oe or equivalent (and appropriate)
- o dep dependent
- o indep independent
- o eeoo each error or omission
- o awrt -answer which rounds to

No working

If no working is shown then correct answers normally score full marks

If no working is shown then incorrect (even though nearly correct) answers score no marks.

With working

If there is a wrong answer indicated on the answer line always check the working in the body of the script (and on any diagrams), and award any marks appropriate from the mark scheme.

If it is clear from the working that the "correct" answer has been obtained from incorrect working, award 0 marks.

Any case of suspected misread loses A (and B) marks on that part, but can gain the M marks.

If working is crossed out and still legible, then it should be given any appropriate marks, as long as it has not been replaced by alternative work.

If there is a choice of methods shown, then no marks should be awarded, unless the answer on the answer line makes clear the method that has been used.

If there is no answer on the answer line then check the working for an obvious answer.

Ignoring subsequent work

It is appropriate to ignore subsequent work when the additional work does not change the answer in a way that is inappropriate for the question: eg. Incorrect cancelling of a fraction that would otherwise be correct.

It is not appropriate to ignore subsequent work when the additional work essentially makes the answer incorrect eg algebra.

Transcription errors occur when candidates present a correct answer in working, and write it incorrectly on the answer line; mark the correct answer.

Parts of questions

Unless allowed by the mark scheme, the marks allocated to one part of the question CANNOT be awarded in another.

International GCSE Maths Jan 2016 – Paper 3H Mark scheme

Apart from Questions 8, 15c, 16 and 22 (where the mark scheme states otherwise), the correct answer, unless clearly obtained by an

incorrect method, should be taken to imply a correct method.

	Q	Working	Answer	Mark	Notes		
1	a	eg. $24 \div 6 \times 800$			M1 for a complete method		
			3200	2	A1 accept 3.2 litres		
	b	eg. 450 ÷ 300 × 6			M1 for a complete method		
			9	2	A1		
					Total 4 marks		

2	1.75 or $1\frac{3}{4}$ or 105			M1	for correctly converting "1hr 45 mins" into a decimal or fraction or minutes (eg. 1.75h or 105 min)
	140 ÷ "1.75 " or 140 140 "105" × 60			M1	independent but "1.75" or "105" must be correct for their duration accept 140 ÷ 1.45
		80	3	A1	
					Total 3 marks

3	$\frac{3}{8} \times \frac{12}{7}$			M1
		$\frac{36}{56}$ oe	2	A1 dep on M1 Accept $\frac{9}{14}$ if clear cancelling seen NB: Use of decimals gains M0 A0
	Alternative: $\frac{9n}{24n} \div \frac{14n}{24n}$ for any integer n			M1 Must see an intention to divide
		$\frac{9}{14}$ oe	2	A1 dep on M1 Answer must come directly from their method eg. $\frac{36}{96} \div \frac{56}{96}$ must be followed by $\frac{36}{56}$
				Total 2 marks

4	a		5(3r+2)	1	B1	
	b		y ⁹	1	B1	
	С	$x^2 + 5x - x - 5$			M1	for 3 correct terms out of a maximum of 4 terms or for 4 correct terms ignoring signs or for $x^2 + 4x + k$ for any non-zero value of k or for + $4x - 5$
			$x^2 + 4x - 5$	2	A1	
	d				M1	for any one correct application of index laws in a product or quotient eg. $\frac{36m^4}{30k^2m}$, $\frac{36k^3m^3}{30k^5}$
			$\frac{6m^3}{5k^2}$	2	A1	oe eg. $1.2m^3k^{-2}$
						Total 6 marks

5	a		20 to 24 oe	1	B1	
	b	2×6 + 7×3 + 12×5 + 17×12 + 22×14 or 12 + 21 + 60 + 204 + 308 or 605			M2	freq × all correct midpoint values stated (or evaluated) with intention to add (condone any two errors in midpoints or frequencies) If not M2 then award M1 for all products $t \times f$ (and t is consistently within the interval, including end values) and intention to add (condone any two errors in their midpoints or frequencies)
		"605" ÷ 40 or $2 \times 6 + 7 \times 3 + 12 \times 5 + 17 \times 12 + 22 \times 14$ 6 + 3 + 5 + 12 + 14			M1	dep on at least M1
			15.125	4	A1	accept 15 or 15.1 or 15.13 from correct working with no errors (15 without working gains M0 A0) NB. Accept 15.1625 (using 2.25 as minterval in first class)
	c	14 ÷ 40 × 100 oe			M1	award M1 for 26 ÷ 40 × 100 or 65%
			35	2	A1	
						Total 7 marks

		construction arcs seen If not B2 then B1 for a bisector within guidelines with no arcs
		present or relevant arcs present with no bisector
		Total 2 marks

7 a	1,2,3,4,5	5,6,7,9 1	B1 r	no repeats
b	eg. 4, 5	, 7, 8 2	B2 f	for 4, 5, and any two of 7, 8, 9, 10
			2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	If not B2 then B1 for 4,5 or 4,5 and any one or two other numbers from the universal set or 4, 5, 7, 8, 9, 10 or 7, 8, 9, 10 or Venn diagram with 4,5 in intersection and any two correct numbers (eg. 8,10) in <i>C</i>
				Total 3 marks

8	6x + 15			M1 for correct expansion of bracket OR division of all terms in a correct equation by 3
	6x + x = 4 - 15			M1 for correct rearrangement within a correct equation with <i>x</i> terms on one side and numbers on the other
		$-1\frac{4}{7}$ oe	3	A1 Award full marks for a correct answer if at least 1 method mark awarded (allow $-\frac{11}{7}$ as final answer) accept $-1.57(1428)$
				Total 3 marks

9 a	$\pi \times 5.4^2 \times 16$			M1
		1466	2	A1 answer in range 1464.9 - 1466
bi		5.45	1	B1 accept 5.449
bii		5.35	1	B1
				Total 4 marks

10 a	(-2, -1) (-1, 1) (0, 3) (1, 5) (2, 7) (3, 9) (4, 11)	correct line	3	B3 for $y = 2x + 3$ drawn from $x = -2$ to 4 if not B3 then B2 for a correct straight line segment through at least 3 of $(-2, -1)$ $(-1, 1)$ $(0, 3)$ $(1, 5)$ $(2, 7)$ $(3, 9)$ $(4, 11)$ OR for all of $(-2, -1)$ $(-1, 1)$ $(0, 3)$ $(1, 5)$ $(2, 7)$ $(3, 9)$ $(4, 11)$ plotted but not joined
				if not B2 then B1 for any 2 correct points stated (could be in a table) or plotted OR a line with a positive gradient through (0, 3) OR a line with gradient 2
b				M1 for $x = 3$ and $y = 2$ drawn
		correct region	2	A1 for correct region identified (R need not be labelled) Accept shaded or unshaded
				Total 5 marks

11	ton ACR = 4.5			M1	for correct trig statement
	$\tan ACB = \frac{4.5}{9.6}$				eg. $\sin ACB = \frac{4.5}{\sqrt{112.41}}$ or
					$\cos ACB = \frac{9.6}{\sqrt{112.41}}$
	$\tan^{-1}\left(\frac{4.5}{9.6}\right)$			M1	dep
		25.1	3	A1	awrt 25.1
					Total 3 marks

12	5t - 5g = 2t + 7			M1 for expanding bracket	within the
				equation or	
				division of all terms b	y 5
	5t - 2t = 7 + 5g			M1 (ft a 4 term equation)	to isolate
				terms in t	
		$t = \frac{5g + 7}{2}$	3	A1 oe	
		$t = \frac{3}{3}$			
				7	otal 3 marks

13 a	11 12 <u>13</u> 13 16 17 17 18 <u>19</u> 19 20			M1	13 or 12.75 (LQ) 19 or 18.25 (UQ) identified from ordered list OR attempt to find IQR eg. 3(rd) and 9(th) seen or 2.75(th) and 8.25(th) seen
	11 12 <u>13</u> 13 16 <u>17</u> 17 18 <u>19</u> 19 20 or 19 –13			M1	Identify 13 or 12.75 (LQ), AND 19 or 18.25 (UQ)
		6	3	A1	accept 5.5
b		James and reason using IQR	1	B1	ft from (a) James - he has a lower IQR oe (IQR must be part of the statement)
С		no change with reason	1	B1	no change box ticked with reason eg. 2 new scores above median and 2 new scores below median or median of 4 numbers is 17
			1		Total 5 marks

14 a	8000 × 1.045 oe (=8360) "8360" × 1.0275 ³ oe	9068.84	3	M1 M1 A1	or 8000 × 1.0275 (=8678.316375) "8678.316375" × accept 9069 and		M2 for 8000 × 1.045 × 1.0275 ³		
					answers in the range 9068.8(0) - 9068.9(0) SC: B1 for an answer of 9020 (8000 + 360 + 3×220)				
b	1 + 0.02 (=1.02)			M1		M1 for 100(%) + 2(%) (= 102(%))		
	5763 ÷ "1.02" oe			M1	dep	M1 (dep) for	r 5763÷"102" × 100 oe		
		5650	3	A 1					
							Total 6 marks		

15	a		5	1	B1	
	b		$(-7 \le) k < 5,$	2	B2 acc	ept $k \le 5$, $k \ge 13$
			$ (-7 \le) k < 5, 13 < k (\le 25) $		If n	ot B2 then B1 for 5 and 13
					or A	k < 5 or $k > 13$
	c	tangent drawn at $x = -2.5$			M1	
					M1 con	nplete method to find gradient
			7.5	3	A1 acc	ept answers in range 7 - 8 with
					WOI	rking seen
	d		-2	1	B1	
	e	1 1 6(1)			M1	
		$\frac{1}{2+-3}$ or -1 or f(-1)				
		-	9	2	A1	
						Total 9 marks

16	$x^2 < 9$ or $x^2 - 9 < 0$ or			M1 Allow $x^2 = 9$ or $x^2 - 9 = 0$
	$\pm\sqrt{-4\times5\times-45}$			
	$\pm \sqrt{9}$ or ± 3 or $(x+3)(x-3)$ or			M1
	x < 3 or x > -3			
		-3 < x < 3	3	A1
				Total 3 marks

17	ai			96	1	B1	
	aii		Angle at the centre is	twice angle at the	1	B1	(indep)
			circumfer	rence			
	b	73 – 26				M1	for a complete method
				47		A 1	
					3	B1	(dep on M1) Alternate segment theorem
		Alternative Scheme					
	b	Angle $RST = 180 - 73$ (=	107) and			M1	
		Angle $SRT = 180 - 26 - 180 - 1$	"107"				
				47		A 1	
						B1	(dep on M1) Alternate segment theorem
							Total 5 marks

No with reason A1 accept no with $-\frac{2}{3}$ (or -0.666) and $\frac{4}{3}$ (or 1.333) $-\frac{2}{3}$ and $\frac{4}{3}$ may be seen as coefficients of x in $y = mx + c$ OR shows that $3y = 4 - 2x$ and line through AB ($y = \frac{4}{3}x + \frac{5}{3}$) intersect at $x = -\frac{1}{6}$ or $y = \frac{13}{9}$ OR L has a negative gradient (with evidence), line AB has a positive gradient (with evidence) NB: Any value given for a gradient must be correct	18	eg. $\frac{31}{12} \left(= \frac{4}{3} \right)$ $y = \frac{4}{3} - \frac{2}{3}x \text{ or } y = \frac{4-2x}{3}$ or $(m =) -\frac{2}{3}$		M1	for gradient of line AB	M1 for $y = \frac{4}{3}x + \frac{5}{3}$ M1 for $\frac{4}{3}x + \frac{5}{3} = \frac{4}{3} - \frac{2}{3}x$ oe	M2 for sketch of L with $(0, \frac{4}{3})$ and (2, 0) marked on axes AND (1,3) and $(-2, -1)$ joined
		3	3	Al	$-\frac{2}{3} \text{ and } \frac{4}{3}$ shows that 3 $(y = \frac{4}{3}x + \frac{4}{3})$ L has a negative (with evidential evidential exists).	may be seen as coefficients of x : $3y = 4 - 2x \text{ and line through } AB$ $3y = 4 - 2x \text{ and line through } AB$ $3y = 4 - 2x \text{ and line through } AB$ $3y = 4 - 2x \text{ and line through } AB$ $3y = 4 - 2x \text{ and line through } AB$ $3y = 4 - 2x \text{ and line through } AB$ $3y = 4 - 2x \text{ and line through } AB$ $3y = 4 - 2x \text{ and line through } AB$ $3y = 4 - 2x \text{ and line through } AB$ $4y = 4 - 2x \text{ and line through } AB$	$\sin y = mx + c$ OR $\frac{13}{9}$ OR $\ln AB \text{ has a positive gradient}$

19	$\frac{1}{3}\pi(3r)^2h$			M1 or $\frac{4}{3}\pi \left(\frac{y}{3}\right)^3$ Condone missing brackets around $3r$ or $\frac{y}{3}$ for this mark only Allow use of 3.14 consistently (or other correct value)	
	$\frac{4}{3}\pi r^3 = \frac{1}{3}\pi (3r)^2 h$			or $\frac{4}{3}\pi \left(\frac{y}{3}\right)^3 = \frac{1}{3}\pi y^2 h$	
		$\frac{9h}{4}$ oe	3	A1 for $\frac{9h}{4}$ oe or $r = \frac{9h}{4}$ NB: $h = \frac{4r}{9}$ scores M2 A0	
				Total 3 ma	rks

20	$\sin A = \sin 48$			M1 36 57
	${36} = {57}$			M1 or $\frac{36}{\sin A} = \frac{57}{\sin 48}$
				M1 dep
	$A = \sin^{-1}\left(\frac{\sin 48}{57} \times 36\right) \mathbf{or}$			Will dop
	,			
	A in range 27.9 – 28			N1 1 1 C N1
	$\frac{1}{2} \times 57 \times 36 \times \sin(180 - 48 - "28")$ (=995.49)			M1 dep on the first M1
	2			or $\frac{1}{2} \times AC \times 36 \times \sin(48)$ with
				AC in range 74 – 74.5 or AC from a correct method
		995	4	A1 for answer in the range 995 - 996
	Alternative			
	Let BD be altitude of triangle			M1 correct method to find BD and DC
	$BD = 36 \times \sin 48^{\circ} (= 26.7)$ AND			
	$DC = 36 \times \cos 48^{\circ} (= 24.0)$			
	$AD = \sqrt{57^2 - "26.7"^2} = 50.331$			M1 dep
	1			M1 dep on the first M1
	$\frac{1}{2}$ × "26.7" × ("24.0" + "50.3")			with deposit the first with
		995	4	A1 for answer in the range 995 - 996
				Total 4 marks

	Scheme 1 P(L,L) + P(L, NL) + P(NL, L)			2.61	Bus L = 0.07; BusNL = 0.63 BikeL = 0.015; BikeNL = 0.285 correct products may be seen instead of these values
21	$1 - 0.1 \ (=0.9) \ \text{or} \ 1 - 0.05 \ (=0.95) \ \text{or} \ 1 - 0.7 \ (=0.3)$			M1	
	P(not late for work) = $0.7 \times 0.9 + 0.3 \times 0.95$ (= 0.915 or $\frac{183}{200}$)			M1	or at least 4 correct products from (addition not needed) $0.07^2 + 2 \times 0.07 \times 0.63 + 2 \times 0.07 \times 0.015 + 2 \times 0.07 \times 0.285 + 2 \times 0.63 \times 0.015 + 0.015^2 + 2 \times 0.015 \times 0.285$
	P(late for work) = $0.7 \times 0.1 + 0.3 \times 0.05$ (= 0.085 or $\frac{17}{200}$) OR 1 - "0.915" (=0.085)			M1	or at least 8 correct products from (addition not needed) $0.07^2 + 2 \times 0.07 \times 0.63 + 2 \times 0.07 \times 0.015 + 2 \times 0.07 \times 0.285 + 2 \times 0.63 \times 0.015 + 0.015^2 + 2 \times 0.015 \times 0.285$
	P(late on at least one day) = 2 × "0.085"×"0.915" + "0.085"×"0.085"			M1 dep	or all 12 correct products with addition : $0.07^2 + 2 \times 0.07 \times 0.63 + 2 \times 0.07 \times 0.015 + 2 \times 0.07 \times 0.285 + 2 \times 0.63 \times 0.015 + 0.015^2 + 2 \times 0.015 \times 0.285$
		0.162775	5	A1	
		or $\frac{6511}{40000}$ oe			
					Total 5 marks

	Scheme 2 1 – P(NL,NL)				BusNL = 0.63
					BikeNL = 0.285
					correct products may be seen instead
					of these values
21	1 – 0.1 (=0.9) or 1 – 0.05 (=0.95) or 1 – 0.7 (=0.3)			M1	
	P(not late for work)			M1	or any two correct products from
	183				(addition not needed)
	$= 0.7 \times 0.9 + 0.3 \times 0.95 = 0.915 \text{ or } \frac{200}{200}$,
	$= 0.7 \times 0.9 + 0.3 \times 0.95 $ (= 0.915 or 200)				$0.63^2 + 0.285^2 + 2 \times 0.63 \times 0.285$
				M1	or all correct products
	P(not late both days)			dep	
				•	$0.63^2 + 0.285^2 + 2 \times 0.63 \times 0.285$
	= "0.915" × "0.915" (= 0.837225)				$(=0.3969 + 0.081225 + 2 \times 0.17955 =$
	, ,				0.837225)
	P(late on at least one day)			M1	
				dep	
	= 1 - "0.837225"= 0.162775				
		0.162775	5	A1	
		or			
		6511			
		${40000}$			
		oe			
					Total 5 marks

22	(length =) $\frac{28-2x}{2}$ or $14-x$ or $\sqrt{12^2-x^2}$			M1	correct expression for length of rectangle OR a pair of correct simultaneous equations eg. $x^2 + y^2 = 12^2$ and $2x + 2y = 28$
	$12^2 = x^2 + (14 - x)^2 \text{ oe}$			M1	for correct equation in one variable accept other forms eg. $2\sqrt{12^2 - x^2} + 2x = 28$
	$144 = x^{2} + 196 - 28x + x^{2} \text{ or}$ $144 = x^{2} + \frac{784 - 112x + 4x^{2}}{4}$			M1	(indep) for expansion of brackets $196 - 28x + x^{2} \text{ or}$ $\frac{784 - 112x + 4x^{2}}{4}$
	$2x^2 - 28x + 52 = 0 \text{or} x^2 - 14x + 26 = 0$			A1	for a correct simplified quadratic equation
	eg. $x = \frac{14 \pm \sqrt{(-14)^2 - 4 \times 1 \times 26}}{2 \times 1}$			M1	ft for correct substitution into quadratic formula for their quadratic (condone one sign error; condone missing brackets and 14 ²)
	eg. $\frac{14 \pm \sqrt{92}}{2}$ or $7 \pm \sqrt{23}$			M1	(indep) correct simplification of discriminant for correct quadratic equation
		11.8, 2.20	7	A1	answers in the ranges 11.7 - 11.8 and 2.2 - 2.21 dep on a correct quadratic equation and at least M4
					Total 7 marks

23	$\overrightarrow{OP} = 4\mathbf{a} \text{ or } \overrightarrow{PO} = 4\mathbf{a} \text{ or } $ $\overrightarrow{PA} = 2\mathbf{a} \text{ or } \overrightarrow{AP} = -2\mathbf{a}$			M1	for correct use of ratio to find a relevant vector NB: may be seen on diagram
	$\overrightarrow{AB} = 4\mathbf{b} - 6\mathbf{a}$ oe or $\overrightarrow{AM} = 2\mathbf{b} - 3\mathbf{a}$ oe or $\overrightarrow{MB} = 2\mathbf{b} - 3\mathbf{a}$ oe			M1	
	$\overrightarrow{PM} = 2\mathbf{b} - \mathbf{a} \text{ oe or}$ $\overrightarrow{MC} = 6\mathbf{b} - 3\mathbf{a} \text{ oe or}$ $\overrightarrow{PC} = 8\mathbf{b} - 4\mathbf{a} \text{ oe}$			M1	indep correct vector equation for \overrightarrow{PM} or \overrightarrow{MC} or \overrightarrow{PC} in terms of a and/or b
	$\overrightarrow{PM} = 2\mathbf{b} - \mathbf{a}$ oe AND $\overrightarrow{MC} = 6\mathbf{b} - 3\mathbf{a}$ oe or $\overrightarrow{PM} = 2\mathbf{b} - \mathbf{a}$ oe AND $\overrightarrow{PC} = 8\mathbf{b} - 4\mathbf{a}$ oe or $\overrightarrow{PC} = 8\mathbf{b} - 4\mathbf{a}$ oe AND $\overrightarrow{MC} = 6\mathbf{b} - 3\mathbf{a}$ oe			A1	
		Show	5	A1	Completion with final reasons given using simplified vectors
					Total 5 marks

	www.dynamicpapers.com
Pearson Education Limited. Registered company number 872828 with its registered office at 80 Strand, London WC2R ORL	
with its registered office at 80 Strand, London WC2R ORL	