

Mark Scheme (Results)

January 2017

International GCSE Chemistry (4CH0) Paper 2C

Pearson Edexcel Certificate in Chemistry (KCH0) Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.edexcel.com (solutions) and the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2017
Publications Code 4CH0_2C_1701_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Ans	wer	Notes	Marks
1 (a)	air			1
(b)	hydrogen	1	ACCEPT H ₂	
		1	IGNORE H	
(c)	chlorine	4	ACCEPT Cl ₂	1
		1	IGNORE CI	
(d)	chlorine	1	ACCEPT Cl ₂	1
			IGNORE CI	
(e)	iron	1	ACCEPT Fe	1
			Total	5

Question number	Answer	Notes	Marks
2 (a) (i)	(both are) solids		1
	AND		
	(both) form alkaline solutions (in water)	ALLOW (both are) <u>slightly</u> soluble	
(ii)	(both are) gases		1
	AND		
	(both) form acidic solutions (in water)		
(b) (i)	the oxide is solid		1
(ii)	the oxide forms an acidic solution (in water)		1
(c)	M1 the lamp does not light up		2
	M2 (so this shows that) phosphorus/it does not conduct electricity	ACCEPT reverse arguments	
		Total	6

Question number	Answer	Notes	Marks
3 (a)	M1 calcium is the most reactive; titanium is the second most reactive; tin is the least reactive OR	ACCEPT Ca > Ti > Sn	3
	calcium most reactive AND tin least reactive		
	M2 (because) titanium displaces tin	ACCEPT replaces	
	M3 (and because) titanium does not displace calcium	ACCEPT replaces	
(b) (i)	$2AI + Fe_2O_3 \rightarrow AI_2O_3 + 2Fe$	ACCEPT multiples and halves	1
(ii)	M1 aluminium		2
	M2 because it has gained oxygen		
	OR		
	because it has lost electrons		
	OR		
	because its oxidation number has increased		
	OR		
	because its oxidation number has changed from 0 to +3	M2 DEP on M1	
(iii)	M1 (powders have) larger surface area		2
	M2 (therefore) faster reaction	ACCEPT reverse arguments IGNORE references to collisions between particles	
		Total	8

Question number	Answer	Notes	Marks
4 (a)	D (NH ₄ ⁺)		1
(b)	D (I ⁻)		1
(c)	A (carbonate)		1
(d)	C (blue, green, brown)		1
(e)	A (carbonate)		1
		Total	5

Question number		Answer	Notes	Marks
5 (a)	•	**	1 mark for each correct ion	2
			IGNORE charges on ion	
	(Li)	* * *	ALLOW any combination of dots and crosses	
(1)		**	Diagram showing sharing of electrons scores 0	
(b)	F. F.C.F		M1 all four bonding pairs correct, and only 8 electrons shown in outer shell of carbon	2
	•••		M2 all non-bonding pairs correct	
			IGNORE inner shells even if incorrect	
			If rings are drawn then both bonding electrons must be in the overlapping area	
			M2 DEP on M1	

(c) M1 (high melting point of LiF) strong forces (of attraction) between (oppositely charged) ions / strong forces (of attraction) between Li+ and F- M2 (good conductivity of LiF) ions are mobile M3 (low melting point of CF4) weak forces (of attraction) between molecules / weak intermolecular forces / weak lintermolecular forces / weak lintermolecular forces / weak intermolecular forces / weak lintermolecular forces (of attraction) between molecules / weak intermolecular forces / weak intermolecular bonds REJECT any references to covalent bonds broken M4 (poor conductivity of CF4) molecules are not charged / molecules are not charged / molecules are neutral / no charged particles M4 (poor conductivity of CF4) molecules are not charged / molecules are not charged / molecules are neutral / no charged particles M5 (Intermolecular forces (of attraction) hetween the ions/ hetween the io	Question number		Answer	Notes	Marks
ions are mobile REJECT any reference to electrons are mobile/delocalised electrons ACCEPT weak van der Waals forces / weak London forces / weak dispersion forces / weak dispersion forces / weak dispersion forces ACCEPT very little energy required to overcome the intermolecular forces. ALLOW weak intermolecular bonds REJECT any reference to electrons are mobile electrons ACCEPT weak van der Waals forces / weak London forces / weak dispersion forces ACCEPT very little energy required to overcome the intermolecular forces. ALLOW weak intermolecular bonds REJECT any reference to electrons are mobile electrons used in bonding IGNORE there are no ions ALLOW no delocalised / no mobile electrons		M1	strong forces (of attraction) between (oppositely charged) ions / strong forces (of attraction)	bonding / strong (ionic) bonds ACCEPT large amount of energy required to overcome the forces between the ions/break (ionic) bonds REJECT any reference to molecules or intermolecular forces	4
 M3 (low melting point of CF₄) weak forces (of attraction) between molecules / weak intermolecular forces (of attraction) ACCEPT very little energy required to overcome the intermolecular forces. ALLOW weak intermolecular bonds REJECT any references to covalent bonds broken M4 (poor conductivity of CF₄) molecules are not charged / molecules are neutral / no charged particles IGNORE no free electrons/all electrons used in bonding IGNORE there are no ions ALLOW no delocalised / no mobile electrons 		M2		REJECT any reference to electrons are	
molecules are not charged / molecules are neutral / no charged in bonding IGNORE there are no ions ALLOW no delocalised / no mobile electrons		М3	weak forces (of attraction) between molecules / weak	Waals forces / weak London forces / weak dispersion forces ACCEPT very little energy required to overcome the intermolecular forces. ALLOW weak intermolecular bonds REJECT any references to	
Total 8		М4	molecules are not charged / molecules are neutral / no charged	electrons/all electrons used in bonding IGNORE there are no ions ALLOW no delocalised /	

Question number	Answer	Notes	Marks
6 (a) (i)	(to provide the) zymase/enzyme (that acts as a catalyst)	ALLOW (to act as a) catalyst ALLOW to increase the rate of reaction IGNORE to lower the activation energy IGNORE to start the reaction REJECT to provide (activation) energy	1
(ii)	(turns) milky / cloudy / turbid (then clear) OR white precipitate / white suspension /		1
(iii)	white solid (forms then disappears) 30 °C	ACCEPT any temperature, or range of temperatures, between 25 and 40 °C	1

Question number		Answer	Notes	Marks
(b)	Ro	ute 1:		4
	М1	Σ (bonds broken) =		
	OD	348 + (5 x 412) + 360 + 463 + (3 x 496)		
	OR	4719 (kJ/mol)		
	M2	Σ (bonds made) = (4 x 743) + (6 x 463)		
	OR	5750 (kJ/mol)	IGNORE negative sign	
	Ro	ute 2:		
	М1	Σ (bonds broken) =		
	OB	348 + (5 x 412) + 360 + (3 x 496)		
	OR	4256 (kJ/mol)		
	M2	Σ (bonds made) = (4 x 743) + (5 x 463)		
	OR	5287 (kJ/mol)	IGNORE negative sign	
	МЗ	4719 - 5750 (kJ/mol) / M1 - M2		
	М4	– 1031 (kJ/mol)	Sign required	
	OR	correct evaluation of M3	ACCEPT answers given to three significant figures	
		Correct evaluation of M3	Correct answer with no working scores 4	
			+ 1031 (kJ/mol) scores 3	

Question number	Answer	Notes	Marks
6 (c) (i)	M1 32		2
	M2 $(32 \times 15.6) = 500 \text{ (kJ)}$	ACCEPT 499 / 499.2	
	OR M1 × 15.6 correctly evaluated	Correct answer with no working scores 2	
(ii)	M1 & M2 Any two from:		2
	 mass of water / volume of water / amount of water distance of flame from the can 	IGNORE temperature of water (at start) ALLOW distance of burner from can	
	length of wick	Trom can	
(iii)	Any two from:		2
	M1 heat (energy)/thermal energy is lost (to /surroundings)	IGNORE just energy lost	
	M2 incomplete combustion (of the fuel)	IGNORE not all of the ethanol is burned	
	M3 evaporation of water/fuel		
		Total	13

Question number	Answer	Notes	Marks
7 (a) (i)	 M1 0.080 mol of HCl react with 0.040 mol of MgCO₃ M2 0.050 > 0.040 	ACCEPT any method involving correct ratios of moles, eg HCl to MgCO ₃ is 2:1 0.08 to 0.05 is 2:1.25 ACCEPT correct calculations involving masses	2
(ii)	M1 $n(CO_2) = \frac{1}{2} \times 0.08(0) \text{ OR } 0.04(0)$ M2 $vol(CO_2) = (0.04(0) \times 24\ 000)$		2
	= 960 (cm 3) OR M1 × 24 000 correctly evaluated		
		Correct answer with no working scores 2 1920 (cm³) scores 1 mark	
(b) (i)	M1 $M_r(MgCl_2.6H_2O) = 203$ M2 % yield = $((5.5 \div (203 \times 0.050)) \times 100$	1920 (cm) scores 1 mark	2
	= 54	M2 CSQ on M1 ACCEPT any number of significant figures except one (eg reject 50) Calculator value is 54.1871921182 REJECT answers > 100	
(ii)	 Any one of: some of the crystals remained in the filtrate (after cooling and filtration) the solution was not allowed to cool for long enough (for complete crystallisation) magnesium carbonate is impure 	IGNORE references to side reactions REJECT not all of the magnesium carbonate reacted Total	1 7

Question number	Answer	Notes	Marks
8 (a)	M1 rate of forward reaction = rate of backward reaction	IGNORE forward reaction = backward reaction	2
	M2 concentrations of reactants/products remain/stay constant	accept amounts/masses for concentrations ACCEPT do not change for remain constant ALLOW colour remains constant ALLOW pressure remains constant IGNORE concentrations/amounts of reactants and products are the same/are equal	

Question number	Answer	Notes	Marks
8 (b) (i)	Number of moles NO ₂		1
	cross drawn on either curve just where it becomes horizontal Number of moles NO2		
(ii)	M1 curve starts at 0,0 and has the general shape shownM2 curve becomes horizontal at approximately the same time as the original curve		3
	M3 curve finishes below original curve	M2 and M3 DEP on M1 or near miss (eg curve does not start at exactly 0,0)	

Question number		Answer	Notes	Marks
8 (0		equilibrium has shifted to the left / equilibrium has shifted to the NO ₂ side / equilibrium has shifted to the reactants side OR more NO ₂ has been produced / more reactants have been produced	IGNORE references to Le Chatelier's principle eg an increase in temperature favours the reaction that reduces the temperature	2
	I	M2 (therefore) backward reaction is endothermic	ACCEPT (forward) reaction is exothermic	
			Total	8

www.dynamicpapers.com

earson Education Limited. Registered ith its registered office at 80 Strand,	company number 872828 London WC2R 0RL	

www.dynamicpapers.com