edexcel 흧

Mark Scheme (Results)
January 2016

International GCSE
Chemistry (4CHO) Paper 1C
Science Double Award (4SC0) Paper 1C
Pearson Edexcel Certificate in
Chemistry (KCHO) Paper 1C Science (Double Award) (KSC0) Paper 1C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2016
Publications Code UG043140
All the material in this publication is copyright
© Pearson Education Ltd 2016

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a) (i) (ii)	$\begin{aligned} & \mathrm{A}(\mathrm{Ag}) \\ & \mathrm{D}(\mathrm{Zr}) \end{aligned}$		$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(b) (i) (ii) (iii) (iv) (v)	3 (The atom has) three electrons in its outer / valence shell 3 (The atom has) electrons in three shells / three shells are occupied (with electrons) aluminium / Al	'energy level’ for 'shell’ ignore references to inner shells ignore 'it has a valency of 3 ' 'energy levels' for 'shells’ accept 'it has three shells'	1 1 1 1 1
(c)		accept any symbol for electrons, eg dots, the letter ' e '	1

	M1 first column correct M2 second column correct M3 third column correct		
(c)	ethane - no change (in colour)	accept '(stays) orange' ignore 'no reaction' /'nothing happens' ignore 'discolours' ignore starting colour of bromine	1
	ethene - (orange to) colourless / decolourises	1	

Question number	Answer	Notes	Marks
3 (a)	nitrogen / N_{2}	accept N	1
(b)	oxygen AND water	accept steam	1
(c)	incomplete combustion (of the octane / fuel)	accept '(burns in a) limited supply / shortage of oxygen/air' reject 'no oxygen'	1
(d) (i)	$\mathrm{N}_{2}+2 \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}$	accept halves and multiples accept as two correct equations via NO accept 'photochemical smog' ignore refs to greenhouse gas / global warming / climate change ignore refs to pollution	1
(ii)	(It produces) acid rain OR (it causes) breathing problems / asthma	(

Question number	Answer	Notes	Marks
4 (a)	water	accept $\mathrm{H}_{2} \mathrm{O}$ accept water vapour if both name and formula given mark name only	1
(b)	carbon dioxide	accept CO_{2} if both name and formula given mark name only	1
(c)	M1 (the copper / it) reacts with oxygen / oxidises M2 to form copper(II) oxide (which is black)	accept 'combines with/joins with/burns in oxygen' ignore 'air' accept 'copper oxide' reject 'copper(I) oxide'	2

Question number	Answer	Notes	Marks
5 (a)	 M1 \& M2 all points correctly plotted to nearest gridline M3 suitable curve of best fit, from the origin	deduct one mark for each incorrectly plotted point do not penalise missing $(0,0)$ if points are not visible, but graph goes through that point, then do not penalise	3

	Question number	Answer	Notes	Marks
(b)	(i)	$25\left(\mathrm{~cm}^{3}\right)$	accept anomalous point based on graph drawn	1
(ii)		M1 the volumes (of gas) are the same	accept 'no more gas is being produced/collected (after $35 \mathrm{~cm}^{3}$)' reject 'all of the reactants have reacted' reject 'all of the acid has reacted' ignore refs to MgCO_{3} dissolving accept refs to MgCO_{3} being limiting reagent	2
		M2 therefore the reaction has finished / all of the solid/ MgCO_{3} has reacted / the solid/ MgCO_{3} has been used up		
	(iii)	value correctly read to nearest gridline from candidate's graph		1
	(iv)	value correctly read to nearest gridline from candidate's graph		1

Question number	Answer	Notes	Marks
6 (a) (i) (ii)	$\begin{aligned} & 2 \mathrm{HgO} \rightarrow 2 \mathrm{Hg}+\mathrm{O}_{2} \\ & \text { redox } \end{aligned}$	accept halves and multiples accept '(thermal) decomposition' ignore 'oxidation' allow 'reduction'	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(b) (i) (ii)	(tap / dropping / separating) funnel (the gas / it) contains air (from the conical flask)	reject 'filter / thistle funnel' accept 'contains impurities' or ref to possible named impurity eg nitrogen reject 'water vapour' allow 'contains less oxygen'	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c)	M1 perform reaction with and without catalyst M2 keep remaining variables (eg concentration or volume of hydrogen peroxide / temperature) the same M3 measure time (to fill the gas jar with oxygen) M4 oxygen produced more quickly/at a faster rate/in a shorter time (in experiment) with catalyst OR M1 weigh a sample of manganese(IV) oxide	accept: M1 perform reaction with and without catalyst M2 oxygen produced more quickly/at a faster rate/in a shorter time (in experiment) with catalyst M3 weigh a sample of manganese(IV) oxide (before putting it into the conical flask) M4 the mass at the end of the reaction should be the same as at the start	4

	(before putting it into the conical flask) $\mathbf{M 2}$ filter (to remove the solid) $\mathbf{M 3}$ dry the solid (and re-weigh it) $\mathbf{M 4}$ the mass should be the same as before		
(d) (i)	$\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{3}$ (ii)	$\mathbf{M 1}$ (Universal Indicator turns) orange/yellow $\mathbf{M 2}$ (the solution/it) is acidic / contains hydrogen ions / contains H^{+}ions	accept $\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}$ allow products shown as correct ions accept 'red' allow 'contains sulfurous / sulfuric acid'

Question number	Answer	Notes	Marks
7 (a)	M1 (Curve) A M2 faster reaction (at higher temperature) M3 therefore curve is steeper / curve levels off sooner	M2 and M3 dep on correct or missing M1 accept 'reaction takes less time'	3
(b)	M1 (Curve) C M2 only half the mass/amount of zinc used M3 therefore only half the volume / 20 cm^{3} of hydrogen produced	M2 and M3 dep on correct or missing M1 accept ‘less zinc used, so less hydrogen produced' for $\mathbf{1}$ mark, if M2 and M3 not scored	3

Question number	Answer	Notes	Marks
8 (a)	(because) a precipitate was formed/a reaction took place each time Y was used OR no precipitate was formed/no reaction took place when X and Z were added together	accept 'it reacts with X and Z (to form a precipitate)' allow use of correct names for X, Y and Z	1
(b)	M1 X is (sodium) iodide and Z is (sodium) chloride M2 because X gives yellow precipitate or Z gives white precipitate OR M1 X is (sodium) iodide because it forms a yellow precipitate M2 therefore \mathbf{Z} is (sodium) chloride OR M1 Z is (sodium) chloride because it forms a white precipitate M2 therefore X is (sodium) iodide		2

(c)	M1 no change/no reaction with (sodium) chloride M2 colour change (to brown solution) with (sodium) iodide	accept 'orange' / 'orange-brown' accept 'grey/black precipitate' reject incorrect colour change	2

Question number	Answer	Notes	Marks
9 (a)	M1 coke M2 limestone accept answers in either order	ignore 'carbon' / 'charcoal' ignore 'calcium carbonate' ignore formulae	2
(b) (i) (ii)	$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{CO} \rightarrow 2 \mathrm{Fe}+3 \mathrm{CO}_{2}$ M1 all formulae correct M2 balanced M1 iron / Fe M2 (it has) lost oxygen	M2 dep on M1 M2 dep on M1or near miss eg $\mathrm{Fe}_{2} \mathrm{O}_{3}$ accept 'iron (III) ions / Fe^{3+} has gained electrons' accept 'oxidation number of iron decreases / oxidation number of iron changes from +3 to 0^{\prime}	2 2
(c) (i) (ii)	$\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ C (neutralisation)		1 1

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
(d) (i) \\
(ii) \\
(e) \\
(i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 oxygen \\
M2 water \\
prevents oxygen/water from coming into contact with the iron \\
galvanising \\
M1 zinc is more reactive than iron / loses \\
electrons more readily \\
M2 (and therefore) corrodes in preference (to \\
the iron)
\end{tabular} \& \begin{tabular}{l}
accept 'air' \\
accept 'moisture' / 'water vapour' ignore 'steam' accept answers in either order \\
accept refs to acting as a barrier \\
ignore 'sacrificial protection' \\
ignore 'sacrificial protection' \\
accept 'reacts (with oxygen/water) in preference (to the iron)' accept refs to zinc converting iron(II) ions to iron (atoms) \\
reject 'zinc rusts' for M2
\end{tabular} \& 2

1
1
1
2

\hline | (i) |
| :--- |
| (ii) | \& | (aluminium/it) is too reactive / more reactive than carbon / above carbon in the reactivity series |
| :--- |
| energy costs are too great / electricity is expensive | \& | accept 'carbon is less reactive than aluminium' accept 'the temperature required is too high' ignore refs to carbon monoxide |
| :--- |
| allow 'it is cheaper to use the blast furnace' ignore refs to iron being below carbon in the reactivity series | \& 1

1

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 10 (a) \& (the molecule) contains a (carbon to carbon) double bond \& accept 'multiple bond' ignore refs to single bonds \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
\(\mathrm{C}_{8} \mathrm{H}_{18}\) and \(\mathrm{C}_{2} \mathrm{H}_{4}\) \\
M1 600-700응 \\
M2 silica / alumina (catalyst)
\end{tabular} \& \begin{tabular}{l}
I gnore names of compounds \\
accept ‘aluminium oxide / silicon dioxide / aluminosilicate / zeolite' accept correct formulae
\end{tabular} \& \[
1
\]
\[
2
\] \\
\hline \begin{tabular}{l}
(c) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 (they have) the same molecular formula \\
M2 (but have) different structural formulae / displayed formulae / structures
\end{tabular} \& \begin{tabular}{l}
allow 'both have same number of carbon and hydrogen (atoms as each other)' \\
accept 'the atoms are arranged differently' \\
accept \\
ignore bond angles \\
accept fully displayed formula
\end{tabular} \& 2

1

\hline
\end{tabular}

$10 \quad \text { (d) (i) }$ (ii)	poly(propene) / polypropene M1 correct structure M2 extension bonds	accept 'polypropylene’ ignore brackets and ' n ' M2 dep on M1 except award M2 if >1 repeat unit given	2
(e)		penalise incorrect use of upper / lower case letters and subscripts penalise bonds to incorrect atoms	1

Question number	Answer	Notes	Marks
11 (a)	M1 chromate (ions) are negative M2 so they are attracted/move towards positive electrode/electrode B	accept 'anions’ accept ‘anode’	2
(b) (i) (ii)	$2 \quad 2 \quad(1) \quad(1)$ $\mathrm{B}(\mathrm{HCl}(\mathrm{aq}))$	accept halves and multiples	$\begin{aligned} & 1 \\ & 1 \end{aligned}$
(c) (i) (ii)	$a q$ aq aq s M1 filter (off the precipitate) M2 wash (with distilled/deionised/pure water) M3 dry in a warm oven / leave to dry / dry with filter paper	Do not accept words eg aqueous allow 'decant' reject refs to crystallisation for M2 and M3 allow 'heat it'	1 3

Question number	Answer	Notes	Marks
12 (a) (i) (ii)	M1 $0.53 \div 106$ M2 0.005(0) (mol) M1 $\mathrm{n}\left(\mathrm{CO}_{2}\right)=0.005 \mathrm{~mol} /$ answer to (a)(i) $\mathbf{M 2} \operatorname{vol}\left(\mathrm{CO}_{2}\right)=(110 \div 0.005)=22000$ (cm^{3}) OR $110 \div$ M1 correctly evaluated	correct answer scores (2) correct answer scores (2)	2 2
(b)	any two from: M1 the bung was not replaced quickly after the acid was added (so some carbon dioxide/gas escaped) M2 (some) carbon dioxide/gas dissolved in the water (in the trough or in the acid) M3 sodium carbonate is not pure	allow 'the bung was not on tightly/there was a leak around the bung (so some carbon dioxide/gas escaped)' allow 'reacted with the water'	2

Question number	Answer	Notes	Marks
13 (a)	potassium / sodium / magnesium / zinc	accept K / Na / Mg / Zn if both name and symbol given, mark name only	1
(b)	M1 bubbles of gas produced rapidly/quickly M2 solid disappears quickly	accept any indication that the rate of evolution of bubbles and the disappearance of the solid is in between that of magnesium and zinc	2
(c) (i) (ii)	potassium hydroxide MgO	accept KOH if both name and formula given, mark name only	1 1
(d) (i) (ii)	carbon/C and it displaces/replaces zinc/Zn M1 carbon / C M2 it removes oxygen from the zinc (oxide) / causes zinc ions to gain electrons / gains oxygen / is oxidised	reject 'displaces zinc oxide / displaces oxygen' accept 'it gains oxygen (from the zinc oxide) / it reduces zinc (oxide)' M2 dep on M1 reject ‘displaces oxygen’	1 2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 14 (a) \& \begin{tabular}{l}
M1 (goes darker because) more \(\mathrm{NO}_{2}\) is formed \\
M2 as equilibrium/reaction shifts to left \\
M3 because there are more moles/molecules (of gas) on the left hand side
\end{tabular} \& \begin{tabular}{l}
allow 'moves backwards/in reverse direction' accept 'fewer moles/molecules on the right hand side' \\
ignore references to Le Chatelier's principle
\end{tabular} \& 3 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 the equilibrium/reaction has shifted to the right / more \(\mathrm{N}_{2} \mathrm{O}_{4}\) has been formed \\
M2 a decrease in temperature shifts the equilibrium in the exothermic direction \\
(yes: because) bond making is exothermic/releases (thermal/heat) energy
\end{tabular} \& accept 'therefore the (forward) reaction is exothermic' for M2 if M1 has been awarded \& 2

1

\hline
\end{tabular}

Question number	Answer	Notes	Marks
15 (a)	$3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$ M1 formula for magnesium nitride correct M2 rest of equation correct	M2 dep on M1	2
(b) (i)	M1 (damp) red litmus (paper) M2 turns blue OR M1 mix with hydrogen chloride/ HCl M2 white solid/smoke forms	reject 'blue litmus' for both M1 and M2 accept any suitable indicator with correct colour change, eg phenolphthalein turns red/pink reject ‘hydrochloric acid' / ‘ $\mathrm{HCl}(\mathrm{aq})$ ' but accept 'fumes from conc. hydrochloric acid' ignore 'fumes'	2

(b) (ii)	M1 M_{r} of lithium nitride $=35$ M2 ($1.40 \div 35=$) $0.04(0)(\mathrm{mol})$	correct answer scores (2)	2
(iii)	M2 from (b)(ii) $\times 3 / 0.04(0) \times 3=0.12$ (mol)		1
(iv)	Using answer to b(iii)		3
	M1 answer to (b)(iii) $\div 2 / 0.12 \div 2=0.06(0)$ (mol)		
	M2 answer to M1 $\div 0.500 / 0.06(0) \div 0.500$ M3 $0.12 \mathrm{dm}^{3} / 120 \mathrm{~cm}^{3}$		
	Using answer to b(ii)		
	M1 answer to (b)(ii) $\div 2 / 0.04(0) \div 2=$ 0.02(0) (mol)		
	M2 answer to M1 $\div 0.500 / 0.02(0) \div 0.500$ M3 $0.04 \mathrm{dm}^{3} / 40 \mathrm{~cm}^{3}$		

