Mark Scheme (Results)

Summer 2017

Pearson Edexcel International GCSE in Chemistry (4CH0) Paper 1CR

Pearson Edexcel International
in Science (Double Award) (4SC0) Paper 1CR

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2017

Publications Code 4CH0_1CR_1706_MS
All the material in this publication is copyright
© Pearson Education Ltd 2017

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 1 (a) \& \begin{tabular}{l}
D \(\left(\mathrm{Br}_{2}\right)\) \\
The only correct answer is D \\
A is not correct because Br is the symbol for bromine \\
\(B\) is not correct because the 2 is a superscript not a subscript \\
C is not correct because the 2 is not a subscript
\end{tabular} \& \& 1 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
B (diffusion) \\
The only correct answer is B \\
A is not correct because condensation is the change of state from a gas to liquid \\
C is not correct because evaporation is change of state from a liquid to gas \\
\(D\) is not correct because the change of state from sublimation is solid to gas
\end{tabular} \& ALLOW particles evaporate \& 1

2

\hline
\end{tabular}

	M1 the bromine/liquid evaporates / the particles escape (from the liquid) M2 (bromine fills the gas jar because) the (gas) particles move freely/randomly/constantly	ALLOW (gas) particles spread ALLOW particles move from a high concentration to low (concentration) IGNORE references to diffusion ACCEPT molecules for particles REJECT atoms once only	
(c)	C The only correct answer is C A is not correct because NH_{3} gas diffuses faster HCl gas B is not correct because NH_{3} gas diffuses faster HCl gas D is not correct because the position indicated is too close to the right hand end of the tube		1
		Total	5

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 2 (a) \& \begin{tabular}{l}
M1 oxygen \\
M2 water (vapour)
\end{tabular} \& \begin{tabular}{l}
ACCEPT \(\mathrm{O}_{2}\) IGNORE O \\
IGNORE air \\
ACCEPT moisture \\
ACCEPT \(\mathrm{H}_{2} \mathrm{O}\) \\
If both name and formula given, mark name only
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) \\
(c)
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{|l|l|}
\hline \multicolumn{1}{|c|}{ Item } \& \multicolumn{1}{c|}{ Method } \\
\hline bicycle chain \& oiling \\
\hline bridge \& \begin{tabular}{l}
painting / \\
galvanising
\end{tabular} \\
\hline car body \& \begin{tabular}{l}
painting / \\
galvanising
\end{tabular} \\
\hline
\end{tabular} \\
D (zinc) \\
The only correct answer is D \\
A is not correct because zinc is the only metal used to galvanise iron \\
\(B\) is not correct because zinc is the only metal used to galvanise iron \\
C is not correct because zinc is the only metal used to galvanise iron
\end{tabular} \& \& 3

1

\hline \& \& Total \& 6

\hline
\end{tabular}

Question number	Answer	Notes	Marks
3 (a)	Separation Method to obtain sand from a mixture of sand and water filtration to separate crude oil into its components fractional distillation to obtain pure water from salt water simple distillation to obtain ethanol from a mixture of ethanol and water fractional distillation		4
(b) (i)	M1 (add to) anhydrous/white copper(II) sulfate M2 turns blue OR M1 add to cobalt(II) chloride paper / cobalt chloride paper M2 turns pink	ACCEPT turns copper(II) sulfate from white to blue for 2 marks ACCEPT blue cobalt(II) chloride ALLOW anhydrous cobalt(II) chloride ACCEPT turns cobalt(II) chloride from blue to pink for 2 marks M2 DEP on M1 or near miss e.g. just copper(II) sulfate IGNORE any reference to testing with indicators	2

Question number	Answer	Notes	Marks
3 (b) (ii)	M1 measure/determine/test its boiling point M2 $100^{\circ} \mathrm{C}$ OR M1 measure/determine/test its freezing point M2 $0^{\circ} \mathrm{C}$ OR M1 measure/determine/test its density M2 $1 \mathrm{~g} / \mathrm{cm}^{3}$	ACCEPT boil it / heat until it boils it boils at $100^{\circ} \mathrm{C}$ ALLOW its boiling point is $100^{\circ} \mathrm{C}$ for 1 mark ALLOW heat it and it boils at $100^{\circ} \mathrm{C}$ for 2 marks ACCEPT freeze it / cool until it freezes it freezes at $0^{\circ} \mathrm{C}$ ALLOW its freezing point is $0^{\circ} \mathrm{C}$ for 1 mark ALLOW cool it and it freezes at $0^{\circ} \mathrm{C}$ for 2 marks ALLOW its density is $1 \mathrm{~g} / \mathrm{cm}^{3}$ for 1 mark M2 DEP on M1 throughout	2
		Tot	8

Question number	Answer	Notes	Marks
4 (a) (i) (ii)	B (the number of protons in an atom) The only correct answer is B A is not correct because atomic number is not the number of neutrons in an atom C is not correct because atomic number is not the number of protons plus the number of electrons in an atom D is not correct because atomic number is not the number of protons plus the number of neutrons in an atom C (electrons in the outer shell) The only correct answer is C A is not correct because the number of protons does not determine chemical properties B is not correct because the number of neutrons does not determine chemical properties D is not correct because the number of protons and neutrons does not determine chemical properties		1 1

(b)								One mark for each correct row	3
		Li	Be	B	C	N	F		
	melting point				high	low	low		
	structure	giant			giant	molecular			
	acid-base character of the oxide	basic			acidic	acidic	acidic		
								Total	5

Question number	Answer	Notes	Marks
$\begin{equation*} 5 \quad \text { (a) } \tag{i} \end{equation*}$ (ii)	add acid before magnesium a burette has a better resolution (than a measuring cylinder)	ORA ALLOW greater accuracy (of data) ALLOW greater precision (of data)	1 1
(b)	 M1 and M2 all points plotted correctly to the nearest gridline for both experiments M3 suitable curve of best fit drawn for acid X M4 suitable curve of best fit drawn for acid Y	Deduct one mark for each incorrectly plotted point Missing $(0,0)$ loses 1 mark only	4

Question number	Answer	Notes	Marks		
5 (c)	M1 Y (has the greater concentration) (because) the curve (for acid Y) has a steeper slope/greater gradient (showing that the reaction is faster) OR (because) it produces the larger volume of gas/more gas in the same time	M1 DEP M2		\quad	OWTTE
:---					
(d)					

Question number	Answer	Notes	Marks
6(a) (iii)	M1 strong (electrostatic) forces (of attraction) between cations/metal ions and (delocalised) electrons	ACCEPT strong forces (of attraction) between nuclei of atoms and (delocalised) electrons	2
	M2 large amount of (thermal/heat) energy needed to overcome the forces	ACCEPT strong metallic bonding / metallic bonds Not just strong bonds	
Not just heat Not just more energy			
M2 DEP on M1 or near miss, e.g. strong bonds			

Question number	Answer	Notes	Marks
6 (b)	M1 (Cu^{2+}) blue precipitate M2 (Fe^{2+}) green precipitate	IGNORE shades IGNORE names of precipitates or formulae REJECT any other colours Both colours correct but no mention of precipitates score $1 / 2$	2
(c) $\begin{aligned} & \text { (i) } \\ & \text { (ii) } \\ & \text { (iii) } \\ & \\ & \text { (iv) }\end{aligned}$	it is unreactive / it is not very reactive / it is low in the reactivity series	ACCEPT it is not as reactive as iron/it is below iron in the reactivity series IGNORE inert	1
	$\mathrm{CO}_{2}+\mathrm{C} \rightarrow 2 \mathrm{CO} / 2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}$	ACCEPT multiples and halves	1
	M1 iron / Fe		2
	M2 (because) it loses oxygen / because oxygen has been removed M2 DEP on M1	ALLOW it loses O IGNORE gains electrons ALLOW the iron(III) ion / Fe^{3+} (is reduced because it) has gained electrons for 1 mark ALLOW Iron(III) oxide/ $\mathrm{Fe}_{2} \mathrm{O}_{3} / \mathrm{Fe}^{3+}$ (is reduced because it) has lost oxygen for 1 mark	
	M1 calcium carbonate decomposes/forms/ changes into calcium oxide	ACCEPT limestone for calcium carbonate	2
	M2 calcium oxide reacts with silicon dioxide/silica	ACCEPT correct chemical equations IGNORE sand ALLOW calcium carbonate reacts with silicon dioxide for 1 mark IGNORE reacts with impurities	
		Total	15

Question number	Answer	Notes	Marks
7 (a) (i)	silver does not react with (dilute sulfuric) acid	ACCEPT silver is below hydrogen in the reactivity series IGNORE silver is unreactive / silver has a low reactivity / silver is inert	1
(ii)	D (zinc and sulfuric acid) The only correct answer is D A is not correct because copper does not react with dilute sulfuric acid B is not correct because gold does not react with dilute hydrochloric acid C is not correct because the reaction between potassium and dilute hydrochloric acid is explosive and therefore not safe	(i)	Experiment 3 because the volume collected is much lower than / very different to the other three
(b)	ACCEPT any answer that suggests the result/value in experiment 3 is much lower/much different to the other three e.g. it is much lower than the other three or there is a large difference between it and the other three	1	

\begin{tabular}{|c|c|c|c|}
\hline (ii) \& \begin{tabular}{l}
M1 chooses 64, 67 and 63 \\
M2 \(65\left(\mathrm{~cm}^{3}\right)\) \\
to increase the validity/reliability (of the measurements/data)
\end{tabular} \& \begin{tabular}{l}
ACCEPT 194 \\
ACCEPT any number of sig figs except 1 eg 64.7 / 64.67 / 64.667 / 64.6 recurring \\
Correct answer with no working scores 2 \\
ALLOW 1 mark for correct calculation using all four volumes (58.5 / 59) \\
ACCEPT to check for anomalous results \\
IGNORE references to increased accuracy
\end{tabular} \& 2

1

\hline \& \& Total \& 6

\hline
\end{tabular}

Question number	Answer	Notes	Marks
8 (a)	$\text { M1 }(54.4 \div 127)=0.428$ AND $(45.6 \div 35.5)=1.28$ M2 Divide by the smaller number to obtain 1:3 ratio OR $0.428: 1.28=1: 3$	ACCEPT any number of sig figs except 1, but allow use of 0.4 in calculation of ratio in M2 ALLOW answers to M1 given as fractions only if it is clear that division by smaller has taken place to obtain a ratio	2
(b) (i) (ii)	M1 rate of forward reaction = rate of backward reaction M2 amounts/concentrations/masses of reactants (and products) remain constant / constant macroscopic properties M1 (liquid) (contains) ions that can flow/move/are mobile that can flow/move/are mobile	IGNORE forward reaction = backward reaction IGNORE amounts/concentrations of reactants and products are equal IGNORE references to carry charge REJECT any reference to electrons moving ACCEPT molecules are not charged/are neutral ACCEPT no electrons that can flow/move/are mobile ACCEPT no delocalised electrons ACCEPT no sea of electrons IGNORE free electrons REJECT any suggestion that the solid is ionic or contains ions	2 2
		Total	6

Question number	Answer	Notes	Marks
9 (a) (i)	halogens are poisonous/toxic	ACCEPT any named halogen IGNORE harmful/dangerous/irritant IGNORE (named) products are toxic	1
(ii)	M1 chlorine most reactive AND iodine least reactive OR	IGNORE reactivity of the halogens decreases down the group	2
	chlorine > bromine > iodine		
	M2 chlorine glows most brightly / glows very brigh	IGNORE references to heat given	
	AND		
	iodine glows least brightly / glows dimly		
(iii)	M1 the statement/student is incorrect	ACCEPT the reactivity can be found	2
	M2 because vapours/gases were used (so the physical states at room temperature are irrelevant)	M1 DEP on M2	

Question number	Answer	Notes	Marks
9 (b) (i)	$\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$	ACCEPT multiples and halves	1
(ii)	$\mathrm{H}_{\mathrm{OX}}^{\mathrm{X}} \underset{\mathrm{XX}}{\mathrm{CX}} \underset{\mathrm{X}}{\mathrm{x}}$		2
	M1 bonding pair of electrons		
	M2 non-bonding pairs correct	M2 DEP on M1	
		ALLOW any combination of dots and crosses	
		If overlapping/touching circles used both electrons must be within the overlapping/touching area IGNORE inner electrons on chlorine even if incorrect	
(iii)	hydrochloric acid		1
		Total	9

Question number	Answer	Notes	Marks
$10 \text { (a) (i) }$ (ii)	M1 (magnesium ribbon) shiny / silvery M2 (magnesium oxide) white (powder/solid/smoke/ash) (lift the lid) to allow oxygen into the crucible (replaces the lid) minimise the loss of magnesium oxide/product	IGNORE grey IGNORE grey ACCEPT air ACCEPT to allow magnesium to react with oxygen ACCEPT smoke for magnesium oxide ALLOW prevent the loss of magnesium oxide, etc	2 2
(b) (c)	M1 $n[\mathrm{Mg}]=0.6 \div 24$ OR $0.025(\mathrm{~mol})$ M2 mass of $\mathrm{O}_{2}=0.4(\mathrm{~g})$ OR (M1 $\div 2) \times 32$ evaluated correctly Alternative method M1 48 (g) require $32(\mathrm{~g})$ M2 $0.6(\mathrm{~g})$ require $0.4(\mathrm{~g})$ $3 \mathrm{Mg}+\mathrm{N}_{2} \rightarrow \mathrm{Mg}_{3} \mathrm{~N}_{2}$	ACCEPT multiples and halves	2 1
		Total	7

Question number	Answer	Notes	Marks
11 (a) (i) (ii)	D $\left(\mathrm{C}_{n} \mathrm{H}_{2 n+2}\right)$ The only correct answer is D A is not correct because $\mathrm{C}_{n} \mathrm{H}_{n}$ is not the general formula for the alkanes B is not correct because $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$ is not the general formula for the alkanes C is not correct because $\mathrm{C}_{n} \mathrm{H}_{2 n}$ is not the general formula for the alkanes C $\left(\mathrm{C}_{n} \mathrm{H}_{2 n}\right)$ The only correct answer is C A is not correct because $\mathrm{C}_{n} \mathrm{H}_{\mathrm{n}}$ is not the general formula for the cycloalkanes B is not correct because $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$ is not the general formula for the cycloalkanes D is not correct because $\mathrm{C}_{n} \mathrm{H}_{2 n}$ is not the general formula for the cycloalkanes		1

| (iii) | Any two from:
 M1 similar/same chemical properties
 M2graded physical properties / trend in physical
 properties
 M3 same functional group
 M4 each member differs (from the previous
 member) by CH_{2}ALLOW they all react in the
 same way/in a similar way
 ACCEPT description of a graded
 physical property
 e.g. boiling increases as number
 of carbon atoms increases
 IGNORE different physical
 properties | 2 |
| :---: | :--- | :--- | :---: |

Question number	Answer	Notes	Marks
11 (b) (i) (ii) (iii)	(the molecule) contains only single bonds	ACCEPT contains no (carbon-carbon) double bonds/multiple bonds IGNORE references to no more atoms can be added, or contains the maximum number of hydrogen atoms IGNORE bond angles IGNORE bond angles	1 1 1
(c) (i) (ii)	ultraviolet/uv (light/radiation)	ALLOW sunlight IGNORE references to temperature or catalyst ACCEPT any number of bromine atoms substituted	1 1
		Total	9

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline 12 (a) \& \begin{tabular}{l}
M1 add water (and stir) \\
M2 filter
\end{tabular} \& \begin{tabular}{l}
ALLOW dissolve in water \\
ACCEPT description of filtration ACCEPT decant \\
M2 DEP on M1 \\
M2 not scored if any mention of evaporating the solution
\end{tabular} \& 2 \\
\hline \begin{tabular}{l}
(b) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
M1 (cation) ammonium / \(\mathrm{NH}_{4}{ }^{+}\) \\
M2 (anion) chloride / \(\mathrm{Cl}^{-}\) \\
ammonia / \(\mathrm{NH}_{3}\)
\end{tabular} \& \begin{tabular}{l}
If both name and formula given, both must be correct \\
One mark if both correct but given in wrong order \\
If both name and formula given, both must be correct
\end{tabular} \& 2

1

\hline | (c) (i) |
| :--- |
| (ii) | \& | M1 (anion) carbonate / $\mathrm{CO}_{3}{ }^{2-}$ |
| :--- |
| M2 (because) carbon dioxide/ CO_{2} is given off (when hydrochloric acid/ HCl is added) |
| M1 (test) flame test |
| M2 (result) brick-red (colour) | \& | ACCEPT hydrogencarbonate / $\mathrm{HCO}_{3}{ }^{-}$ If both name and formula given, both must be correct |
| :--- |
| ALLOW the gas is carbon dioxide |
| ACCEPT description of flame test |
| ACCEPT red / orange-red |
| REJECT all other colours |
| M2 DEP on M1 or near miss |
| e.g. heat the solid |
| but REJECT if solid is heated in a test |
| tube, etc | \& 2

2

\hline \& \& Total \& 9

\hline
\end{tabular}

Question number	Answer	Notes	Marks
13 (a)	M1 use the burette to add the (sulfuric) acid (to the sodium hydroxide) M2 until there is a change in colour (of the indicator/methyl orange/solution) M3 take initial and final readings of acid (and subtract to calculate the volume added) Plus any one from: M4 add acid dropwise (when near to the end point) M5 swirl the solution (when near to the end point) M6 repeat to obtain concordant results	If both initial and final colours are given both must be correct ACCEPT orange/pink/red as the final colour ACCEPT correct colours of any alternative indicator chosen e.g. (pink) to colourless for phenolphthalein (blue) to purple/red/pink for litmus REJECT Universal Indicator ALLOW repeat to obtain accurate/reliable results	4

Question number	Answer	Notes	Marks
13 (b) (i)	$20(.0)^{\circ} \mathrm{C}$		1
	(ii)	$17.5 \mathrm{~cm}^{3}$	
	(iii)	$10\left(\mathrm{~cm}^{3}\right)$ AND $25\left(\mathrm{~cm}^{3}\right)$	
		Total	$\mathbf{7}$

Question number	Answer	Notes	Marks
14 (a)	B (changes from shiny to dull) The only correct answer is B A is not correct because a freshly exposed surface of lithium does not bubble and fizz when in contact with air C is not correct because a freshly exposed surface of lithium does not burst into flame when in contact with air D is not correct because a freshly exposed surface of does change when in contact with air	(i)	burns with a pop/squeak OR use burning/lit spill to see if pops/squeaks OR (b) flame to see if pops/squeaks

(ii)	M1 lithium hydroxide/LiOH/hydroxide ion(s)/OH (formed)	If both name and formula given both must be correct	2
M2 (therefore) the solution is alkaline	ACCEPT pH is of the solution greater than 7 ALLOW solution is basic		

Question number	Answer	Notes	Marks
15 (a)	M1 $0.02(00) \times 0.2(00)$ M2 0.004(00) (mol)	ACCEPT 4 for 1 mark Correct answer with no working scores 2	2
(b)	M1 $0.004(00) \div 0.1(00)$ OR M2 from (a) $\div 0.1(00)$ M2 0.04(00) $\mathrm{dm}^{3} / 40(.0) \mathrm{cm}^{3}$ OR M2 from (a) $\div 0.1(00)$ correctly evaluated	Unit required Correct answer, using M2 from part (a), with no working scores 2	2
(c)	M1 $n(\mathrm{NaOH})=0.03(00) \times 0.2(00)$ OR 0.006(00)(mol) M2 mass of $\mathrm{NaOH}=0.24 \mathrm{~g}$ OR M1 $\times 40$ correctly evaluated	Correct answer with no working scores 2	2
		Total	6

