CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the October/November 2015 series

4037 ADDITIONAL MATHEMATICS

4037/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	www.dynam	nicpapers	.com
Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – October/November 2015	4037	13

Т

٦

Abbreviations

answers which round to
correct answer only
dependent
follow through after error
ignore subsequent working
or equivalent
rounded or truncated
Special Case
seen or implied
without wrong working

1 (i)		B1	
(ii)		B1	
(iii)		B1	
2	$\cos\left(3x - \frac{\pi}{4}\right) = (\pm)\frac{1}{\sqrt{2}} \text{ oe}$	M1	division by 2 and square root
	$3x - \frac{\pi}{4} = -\frac{\pi}{4}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}$		
	$x = \left(-\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \ \left(\frac{3\pi}{4} + \frac{\pi}{4}\right) \div 3 \text{ oe}$	DM1	correct order of operations in order to obtain a solution
	$x = 0$ and $\frac{\pi}{6}$ (or 0 and 0.524)	A2/1/0	A2 for 3 solutions and no extras in the range A1 for 2 solutions
	$x = \frac{\pi}{3}$ (or 1.05)		A0 for one solution or no solutions

L		Mark Scheme			Syllabus	Paper	
		Cambridge O Level – October/Nov	ember 20	015 4037 13			
3	(a)	$\begin{pmatrix} 12 & 16 & 4 \\ 30 & 32 & 10 \end{pmatrix}$	B2,1,0	B2 for 6 elem B1 for 5 elem	· · · · · · · · · · · · · · · · · · ·		
	(b)	$ \begin{pmatrix} 28 & -24 \\ -8 & 76 \end{pmatrix} = m \begin{pmatrix} 4 & 6 \\ 2 & -8 \end{pmatrix} + n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ - 24 = 6m or -8 = 2m giving m = -4	B2,1,0	B2 for 4 correct elements in \mathbf{X}^2 B1 for 3 correct elements in \mathbf{X}^2			
		-24 = 6m or $-8 = 2m$ giving $m = -4$	B1	For $m = -4u$	ising correct	I	
		28 = 4m + n or $76 = -8m + nn = 44$	M1 A1	complete met	thod to obtain	1 <i>n</i>	
	(c)	$a^2 - 6 = 0$ so $a = \pm \sqrt{6}$	B2,1,0	B2 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$, with no incorrect statements seen or B1 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$ seen or B1 for $a = \sqrt{6}$ and no incorrect working			
4	(i)	$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$	B1	correct use of the area			
		$\frac{1}{2} \left(4\sqrt{3} + 1 \right) \times BC = \frac{47}{2}$ $BC = \frac{47}{\left(4\sqrt{3} + 1 \right)} \times \frac{\left(4\sqrt{3} - 1 \right)}{\left(4\sqrt{3} - 1 \right)}$	M1	correct rationalisation			
		$BC = 4\sqrt{3} - 1$	A1	Dependent on all method being seen			
		Alternative method					
		$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$ $\left(4\sqrt{3}+1\right)\left(a\sqrt{3}+b\right) = 47$	B1				
		Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations	M1				
		$BC = 4\sqrt{3-1}$	A1	Dependent on all method seen including solution of simultaneous equations			
	(ii)	$(4\sqrt{3}+1)^{2} + (4\sqrt{3}-1)^{2}$ $= (48+8\sqrt{3}+1) + (48-8\sqrt{3}+1)$					
		$= (48 + 8\sqrt{3} + 1) + (48 - 8\sqrt{3} + 1)$	B1FT	6 correct FT terms seen			
		$AC^{2} = 98$ $AC = 7\sqrt{2}$ or $p = 7$	B1cao	98 and $7\sqrt{2}$	or 98 and <i>p</i> =	= 7	

	www.dynamicpapers.com					
Page 4				Syllabus	Paper	
	Cambridge O Level – October/Nov	ember 20	15	4037	13	
5	When $x = \frac{\pi}{4}$, $y = 2$ $\frac{dy}{dx} = 5\sec^2 x$ When $x = \frac{\pi}{4}$, $\frac{dy}{dx} = 10$ Equation of normal $y - 2 = -\frac{1}{10}\left(x - \frac{\pi}{4}\right)$	B1 B1 B1 M1	y = 2 $5 \sec^2 x$ 10 from different of the difference of the di	,	$\left(\frac{\pi}{4}\right)$	
	$10y + x - 20 - \frac{\pi}{4} = 0$ or $10y + x - 20.8 = 0$ oe	A1	allow unsimp	olified		
6 (i)	-4 -2 2 4 6 8	B1 B1 B1	shape intercepts on intercept on y maximum an	v-axis for a cu	rve with a	
(ii)	(2,16)	M1 A1	$(2, \pm 16)$ seen (2, 16) or $x =$	()		
(iii)	k = 0	B1				
	<i>k</i> > 16	B1				

	Page 5	Mark Scheme Syllabus Paper				
		Cambridge O Level – October/Nov				13
				11		
7		$\frac{dy}{dx} = 2\sin 3x (+c)$ $4\sqrt{3} = 2\frac{\sqrt{3}}{2} + c$	B1 M1	$2\sin 3x$ finding constant using dy $L \sin 2$ dx much increases for $dx = 1$		
		dv –		$\frac{dy}{dx} = k \sin 3x + c \text{ making use of}$ $\frac{dy}{dx} = 4\sqrt{3} \text{ and } x = \frac{\pi}{9}$		
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x + 3\sqrt{3}$	A1	Allow with <i>c</i>	$x = 5.20 \text{ or } \sqrt{2}$	7
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x (+d)$	B1FT	FT integration of <i>their</i> $k \sin 3x$		
		$-\frac{1}{3} = -\frac{2}{3}\cos\frac{\pi}{3} + 3\sqrt{3}\left(\frac{\pi}{9}\right) + d$	M1	finding constant <i>d</i> for $k \cos 3x + cx + d$		
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x - \frac{\sqrt{3}}{3}\pi$	A1	Allow y = -0.667 columnation	$\cos 3x + 5.20x$	-0.577π
8	(a)	$(2+kx)^8 = 256 + 1024kx + 1792k^2x^2 + 1792k^3x^3$				
		$k = \frac{1}{4}$	B1			
		p = 112 $q = 28$	B1FT B1FT	FT 1792 multiplied by <i>their</i> k^2 FT 1792 multiplied by <i>their</i> k^3 correct term seen		
	(b)	${}^{9}C_{3}x^{6}\left(-\frac{2}{x^{2}}\right)^{3}$	M1			
		$84x^6\left(-\frac{8}{x^6}\right)$ leading to -672	DM1 A1	Term selected evaluated	d and 2 ³ and	${}^{9}C_{3}$ correctly

Î	Pag	je 6	Mark Scheme		Syllabus Paper
			Cambridge O Level – October/Nove	ember 20	015 4037 13
9	(a)	(i)	Number of arrangements with Maths books as one item = $4!$ or $4 \times 3!$	M1	$4!(\times 2)$ or $4 \times 3!(\times 2)$ oe
			or Maths books can be arranged 2! ways and History 3! ways = $2! \times 3!$		$2! \times 3! (\times 4)$ or $2 \times 3! (\times 4)$ oe
			$2 \times 4! \text{ or } 2 \times 4 \times 3! \text{ or } 4 \times 2 \times 3! = 48$	A1	A1 for 48
		(ii)	$5! - 48$ or $6 \times 2 \times 3!$	M1	5! - their answer to (i) or for $6 \times 2 \times 3$
			72	A1	01 101 0 * 2 * 3
	(b)	(i)	3003	B1	
		(ii)	3003 - 6 - 135	M1	<i>their</i> answer to (i) $-6 - {}^{6}C_{4} \times 9$
				B1	135 subtracted
			2862	A1	
			or	2.64	
			$2M \ 3W = 720$	M1	complete correct method using 4 cases,
			3M 2W = 1260 4M 1W = 756		may be implied by working. Must have at least one correct
			5M = 126	B1	any 3 correct
			2862	A1	

	Page 7	Mark Scheme	Syllabus Paper				
[Cambridge O Level – October/Nov	015 4037 13				
10	(i)	$10^{2} = 6^{2} + 6^{2} - 2 \times 6 \times 6 \times \cos ABC$ or $\sin\left(\frac{ABC}{2}\right) = \frac{5}{6}$	M1	correct cosine rule statement or correct statement for $\sin \frac{ABC}{2}$ or equating area oe			
		or $ABC = \pi - \sin^{-1} \frac{10\sqrt{11}}{36}$					
		ABC = 1.9702	A1	1.9702 or better			
	(ii)	XY = 2 Arc length $6\left(\frac{\pi - 1.970}{2}\right)$ oe	B1 B1	for <i>XY</i> (may be implied by later work allow on diagram) correct arc length (unsimplified)			
		Perimeter = $2 + 2\left(6\left(\frac{\pi - 1.970}{2}\right)\right)$ = 9.03	M1 A1	<i>their</i> $2 + 2 \times 6 \times$ <i>their</i> angle <i>C</i>			
	(iii)	$\left(\frac{1}{2} \times 6^2 \left(\frac{\pi - 1.970}{2}\right) - \frac{1}{2} \times 5 \times \sqrt{11}\right) \times 2$	M1 M1	sector area using <i>their</i> C area of $\triangle ABM$ where M is the midpo of AC, or ($\triangle s ABY$ and BXY) or $\triangle AB$			
		= 4.50 or 4.51 or better	A1	Answers to 3sf or better			

1	Page 8	Mark Scheme		Syllabus Paper		
		Cambridge O Level – October/N	lovember 20			
11		$x^2 - 2x - 3 = 0$ or $y^2 - 6y + 5 = 0$	M1	substitution and simplification to obtain a three term quadratic equation in one variable		
		leading to (3, 5) and (-1, 1)	A1,A1	A1 for each 'pair' from a correct quadratic equation, correctly obtained.		
		Midpoint (1, 3)	B1cao	midpoint		
		(Gradient – 1) Perpendicular bisector $y = 4 - x$ Meets the curve again if $x^{2} + 10x - 15 = 0$ or $y^{2} - 18y + 41 = 0$	M1 M1	perpendicular bisector, must be using <i>their</i> perpendicular gradient and <i>their</i> midpoint substitution and simplification to obtain a three term quadratic equation in one variable.		
		leading to $x = -5 \pm 2\sqrt{10}$, $y = 9 \mp 2\sqrt{10}$	A1,A1	A1 for each 'pair'		
		$CD^{2} = \left(4\sqrt{10}\right)^{2} + \left(4\sqrt{10}\right)^{2}$	M1	Pythagoras using <i>their</i> coordinates from solution of second quadratic. $(x_1 - x_2)^2 + (y_1 - y_2)^2$ must be seen if not using correct coordinates.		
		$CD = 8\sqrt{5}$	A1	A1 for $8\sqrt{5}$ from $\sqrt{320}$ and all correct so far.		

	www.dynamicpapers.co					.com
	Page 9	Mark Scheme			Syllabus	Paper
		Cambridge O Level – October/Nov	ember 20	015	4037	13
			<u> </u>	T		
12	(a)	$2^{2x-1} \times 2^{2(x+y)} = 2^7$ and $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$	M1	expressing 4^{3} 9^{2y-x} , 27^{y-4} as	^{x+y} , 128 as positions for a second	owers of 2 and
		2x - 1 + 2(x + y) = 7 oe	A1	Correct equa	tion from cor	rect working
		2(2y-x)=3(y-4) oe	Al			rect working
		leading to $x = 4$, $y = -4$	A1	for both		
		Example of Alternative method Method mark as above 2x - 1 + 2(x + y) = 7	M1 A1	As before One of the co	orrect equation	ons in x and y
		leading to $y = \frac{(8-4x)}{2}$ Correctly substituted in $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$				
		Leading to $2\left(\frac{2(8-4x)}{2}-x\right) = 3\left(\frac{(8-4x)}{2}-4\right)$ Leading to $x = 4$ and $y = -4$	A1 A1	Correct, unsi only Both answers		nation in <i>x</i> or <i>y</i>
				Doth unswer	5	
	(b)	$(2(5^z)-1)(5^z+1)=0$	M1	solution of q	uadratic	
		leading to $2.5^z = 1$ ($5^z = -1$)	A1	correct soluti		
		$5^z = 0.5$	DM1	correct attem <i>k</i> is positive	pt to solve 2.	$5^z = k$, where
		$z = \frac{\log 0.5}{\log 5}$ or $z = -0.431$ or better	A1	must have or	ne solution or	ıly