

# **Cambridge O Level**

MATHEMATICS (SYLLABUS D)

Paper 1 MARK SCHEME Maximum Mark: 80 4024/12 October/November 2023

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level components, and some Cambridge O Level components.

## **Generic Marking Principles**

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

## **Mathematics Specific Marking Principles**

- 1 Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.
- 2 Unless specified in the question, non-integer answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.
- 3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.
- 4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).
- 5 Where a candidate has misread a number or sign in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 A or B mark for the misread.
- 6 Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

#### Abbreviations

| cao  | correct answer only        |
|------|----------------------------|
| dep  | dependent                  |
| FT   | follow through after error |
| isw  | ignore subsequent working  |
| oe   | or equivalent              |
| SC   | Special Case               |
| nfww | not from wrong working     |
| soi  | seen or implied            |

# Cambridge O Level – Mark Scheweww.dynamicphp@rscoden2023 PUBLISHED

| Question | Answer                                                                        | Marks | Partial Marks                                                                                                                                                                                                          |
|----------|-------------------------------------------------------------------------------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1(a)     | 0.015                                                                         | 1     |                                                                                                                                                                                                                        |
| 1(b)     | 3000                                                                          | 1     |                                                                                                                                                                                                                        |
| 1(c)     | 14                                                                            | 1     |                                                                                                                                                                                                                        |
| 2        | $\frac{5}{21}$ cao                                                            | 1     |                                                                                                                                                                                                                        |
| 3(a)     | 0.64 cao                                                                      | 1     |                                                                                                                                                                                                                        |
| 3(b)     | 4.074 cao                                                                     | 1     |                                                                                                                                                                                                                        |
| 3(c)     | 4                                                                             | 1     |                                                                                                                                                                                                                        |
| 4(a)     | 13                                                                            | 1     |                                                                                                                                                                                                                        |
| 4(b)     | 3                                                                             | 1     |                                                                                                                                                                                                                        |
| 5        | 28                                                                            | 2     | M1 for $\frac{8}{9-5}$ [×k]<br>where $k = 1, 5, 9$ or $(5+9)$ oe<br>or $\frac{x}{x+8} = \frac{5}{9}$ oe or $\frac{x-8}{x} = \frac{5}{9}$ oe<br>or $5y+8=9y$ oe                                                         |
| 6(a)     | 73                                                                            | 1     |                                                                                                                                                                                                                        |
| 6(b)     | 107                                                                           | 1     | <b>FT</b> $180 - their 73$<br>Dep on $0 < their 73 < 180$ and their $73 \neq 90$                                                                                                                                       |
| 7(a)     | Rotation<br>90° clockwise oe<br>[centre] (0, 0)                               | 3     | B1 for each                                                                                                                                                                                                            |
| 7(b)     | Shape drawn at<br>(-7, 2), (-1, 2), (-1, -4),<br>(-4, -4), (-4, -1), (-7, -1) | 3     | <b>B2</b> for correct size and orientation, wrong<br>centre<br>or 5 correct vertices plotted<br>or <b>B1</b> for length scale factor = 3 soi<br>or for correct enlargement centre (5, 5)<br>with scale factor 2 or 0.5 |
| 8(a)     | $4.93 \times 10^{-3}$ cao                                                     | 1     |                                                                                                                                                                                                                        |
| 8(b)     | $8 \times 10^7$ cao                                                           | 1     |                                                                                                                                                                                                                        |
| 9(a)     | $2^2 \times 3^2 \times 5$<br>or $2 \times 2 \times 3 \times 3 \times 5$       | 2     | <b>B1</b> for list 2, 2, 3, 3, 5<br>or <b>M1</b> for any two stages correct in factor<br>tree or ladder method                                                                                                         |

| Question | Answer                                                                | Marks | Partial Marks                                                                                                                                                                                                 |
|----------|-----------------------------------------------------------------------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9(b)     | 5 cao                                                                 | 1     |                                                                                                                                                                                                               |
| 10       | 1000 and 4 and 10 seen as rounded<br>values<br>and<br>final answer 20 | 2     | <b>B1</b> for two of 1000, 4 or 10 seen as rounded values                                                                                                                                                     |
| 11       | $m \leq 3 \text{ or } 3 \geq m$ final answer                          | 2     | <b>M1</b> for isolating term in $m$<br>e.g. $7m$ [] $8 + 13$ oe                                                                                                                                               |
| 12       | Correct method to eliminate one variable                              | M1    |                                                                                                                                                                                                               |
|          | [x = ] 4<br>$[y = ] -\frac{3}{2}$ oe                                  | A2    | A1 for either $x = 4$ or $y = -\frac{3}{2}$                                                                                                                                                                   |
|          |                                                                       |       | or after <b>A0</b> , <b>SC1</b> for a pair of values that<br>satisfy either equation or for correct<br>answers with no working                                                                                |
| 13       | 51                                                                    | 2     | <b>M1</b> for $12 \times 8$ soi or $5 \times 9$ soi                                                                                                                                                           |
| 14(a)    | 47 to 51                                                              | 1     |                                                                                                                                                                                                               |
| 14(b)    | Acceptable bisector of line <i>AC</i> with correct arcs               | 2     | <b>B1</b> for acceptable bisector of line <i>AC</i> with no/incorrect arcs                                                                                                                                    |
| 14(c)    | Correct region shaded                                                 | 2     | FT their bisector                                                                                                                                                                                             |
|          |                                                                       |       | <ul> <li>B1 for arc centre <i>B</i>, radius 6 cm</li> <li>B1 for correct shading, FT <i>their</i> arc centre <i>B</i> and <i>their</i> bisector dependent on region with bisector and arc as edges</li> </ul> |
| 15(a)    | 32<br>24<br>20                                                        | 2     | <b>B1</b> for one correct term in correct position<br>or <b>M1</b> for $\frac{16-28}{3}$ oe soi                                                                                                               |
| 15(b)    | $2n^2 + 1$ oe final answer                                            | 2     | <b>B1</b> for a quadratic expression in $n$ as<br>answer<br>or for correct answer seen<br>or for at least two second differences of 4<br>seen                                                                 |
| 16(a)    | 6                                                                     | 1     |                                                                                                                                                                                                               |
| 16(b)    | $T^2 + 4$ final answer                                                | 2     | <b>M1</b> for $T^2 = P - 4$ or better                                                                                                                                                                         |
| 17(a)    | Correct cumulative frequency diagram                                  | 2     | B1 for at least 5 points plotted correctly                                                                                                                                                                    |

# Cambridge O Level – Mark Scheweww.dynamicphp@rscoden2023 PUBLISHED

| Question | Answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Marks | Partial Marks                                                                                               |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------------------------------------------------------------------------------------------------------|
| 17(b)    | Strict <b>FT</b> <i>their</i> UQ – <i>their</i> LQ evaluated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2     | FT their increasing curve/polygon                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <b>B1 dep</b> for <i>their</i> UQ written or <i>their</i> LQ written, dependent on increasing curve/polygon |
| 17(c)    | Correct reading of <i>H</i> when CF is 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2     | FT their increasing curve/polygon                                                                           |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <b>M1</b> for 52 soi                                                                                        |
| 18(a)    | $\frac{6}{20}$ oe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1     |                                                                                                             |
| 18(b)    | B<br>20 nfww                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3     | <b>M1</b> for [distance $B = ]5 \times 20$ oe                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <b>M1</b> for [distance $A = \frac{(1+7) \times 20}{2}$ oe                                                  |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | OR 1                                                                                                        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | <b>M2</b> for $4 \times 20 - \frac{1}{2} \times (7 - 1) \times 20$                                          |
| 19       | $\frac{9x+2}{16}$ final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2     | <b>M1</b> for $\frac{2(x+1)+4\times 3x-5x}{16}$ oe                                                          |
| 20(a)    | (c-3)(2d+e) final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2     | <b>B1</b> for one correct partial factorisation seen or for correct answer seen                             |
| 20(b)    | 3(v-3t)(v+3t) final answer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2     | <b>B1</b> for $(3v - 9t)(v + 3t)$ seen<br>or $(v - 3t)(3v + 9t)$ seen                                       |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       | or $3(v^2 - 9t^2)$ seen<br>or for correct answer seen                                                       |
| 21(a)    | 360-6x $3y$ x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M2    |                                                                                                             |
|          | $\frac{360-6x}{360} \times 2\pi \times \frac{3y}{4} = 9 \times \frac{x}{360} \times 2\pi y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | M1 for $\frac{x}{360} \times 2\pi y$ oe                                                                     |
|          | or $3y = 6x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 - y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + y + 3y = 0 + x + 2 + x + 3y = 0 + x + 2 + x + 3y = 0 + x + 2 + x + 3y = 0 + x + 2 + x + 3y = 0 + x + 2 + x + 3y = 0 + x + 2 + x + 3y = 0 + x + 2 + x + 3y = 0 + x + 2 + x + 3y = 0 + x + 3y = $ |       | or for $\frac{6x}{360} \times 2\pi \times \frac{3y}{4}$ oe                                                  |
|          | $2\pi \times \frac{3y}{4} - \frac{6x}{360} \times 2\pi \times \frac{3y}{4} = 9 \times \frac{x}{360} \times 2\pi y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | or for $(360 - 6x)$ seen                                                                                    |
|          | At least one extra step of rearrangement<br>leading to<br>x = 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | A1    | A0 if any errors or omissions                                                                               |
| 21(b)    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2     | M1 for $\frac{20 \times \pi \times y^2}{360} = 2\pi$ oe or better                                           |
| 22(a)    | $x(x-1) + 3 \times 2 [= 2x + 6]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | M1    |                                                                                                             |
|          | $x^{2} - x + 6 = 2x + 6$<br>leading to $x^{2} - 3x = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | A1    | Brackets expanded and no errors or omissions seen                                                           |

# Cambridge O Level – Mark Schewww.dynamicpap/ersecoden 2023 PUBLISHED

| Question  | Answer                                                                                                     | Marks | Partial Marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|------------------------------------------------------------------------------------------------------------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 22(b)(i)  | 3, 0                                                                                                       | 2     | M1 for $x(x-3)$ [= 0] seen<br>or for $\frac{3\pm\sqrt{9}}{2}$ seen<br>or for $\frac{3}{2}\pm\sqrt{\frac{9}{4}}$ seen                                                                                                                                                                                                                                                                                                                                                                                                       |
| 22(b)(ii) | 12                                                                                                         | 2     | M1 for $2(x - 1) + 2(x + 1) [= y]$ oe or<br>better<br>or for $2(their x - 1) + 2(their x + 1) [= y]$                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23(a)     | Venn diagram completed correctly                                                                           | 2     | <b>B1</b> for 2 values correct in correct position                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 23(b)     | 10 cao                                                                                                     | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24(a)(i)  | $2\mathbf{b} - \mathbf{a}$ final answer                                                                    | 1     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 24(a)(ii) | $\frac{3}{2}$ <b>a</b> + 5 <b>b</b> final answer<br>or $\frac{3\mathbf{a} + 10\mathbf{b}}{2}$ final answer | 3     | M1 for a correct vector route for $\overrightarrow{OB}$<br>along the lines of the diagram<br>or $[\overrightarrow{AB} =] \frac{5}{2} \overrightarrow{AP}$ or $2\overrightarrow{AB} = 5\overrightarrow{AP}$ oe stated<br>or $[\overrightarrow{PB} =] \frac{3}{2} \overrightarrow{AP}$ or $2\overrightarrow{PB} = 3\overrightarrow{AP}$ oe stated<br>B1 FT for $[\overrightarrow{AB} =] \frac{5}{2}$ their $(2\mathbf{b} - \mathbf{a})$ oe<br>or $[\overrightarrow{PB} =] \frac{3}{2}$ their $(2\mathbf{b} - \mathbf{a})$ oe |
| 24(b)     | $\frac{3}{5}$ <b>a</b> + 2 <b>b</b> oe                                                                     | 1     | <b>FT</b> $\frac{2}{5} \times their \overrightarrow{OB}$ or $\frac{2}{their 5} \times their \overrightarrow{OB}$                                                                                                                                                                                                                                                                                                                                                                                                           |