

Cambridge O Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

000089794

MATHEMATICS (SYLLABUS D)

4024/12

Paper 1 October/November 2022

2 hours

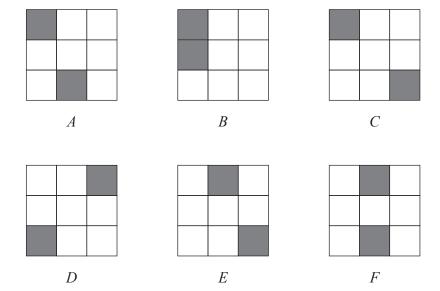
You must answer on the question paper.

You will need: Geometrical instruments

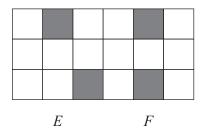
INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- Calculators must not be used in this paper.
- You may use tracing paper.
- You must show all necessary working clearly.

INFORMATION


- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].

This document has 20 pages. Any blank pages are indicated.

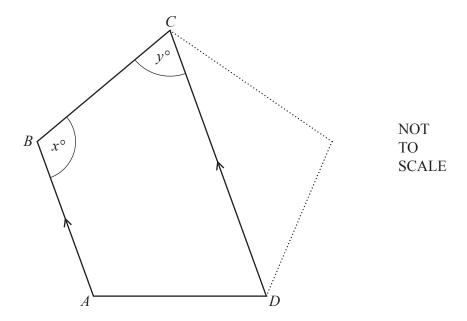

ELECTRONIC CALCULATORS MUST NOT BE USED IN THIS PAPER

1	(a)	Work out $80 \div 0.02$.		
	(b)	Evaluate $\sqrt[3]{1000}$.		[1]
2	(a)	Put one pair of brackets into this calculation to make it correct $4 + 4 \times 4 - 4 = 4$	t.	[1]
	(b)	Work out $-6 \times (-3+7)$.		[1]
3	Wri	te 7.54×10^{-4} as an ordinary number.		[1]
				[1]

4 Sam has six square tiles labelled A, B, C, D, E and F.

When Sam places tiles E and F side by side the resulting rectangle has no lines of symmetry and no rotational symmetry.

Write down the two tiles that Sam should place side by side to make a rectangle that has


(a) one line of symmetry only,

.....[1]

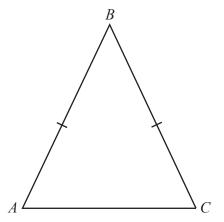
(b) rotational symmetry of order 2.

.....[1]

5	The Eacl	perimete h edge of	r of a regula the octagor	ar hexagon i	s equal to thg.	e perimeter o	of a regui	lar octagon.		
	Fino	d the leng	th of one ed	ge of the he	xagon.					
									 cm	[2]
6	(a)	Work ou	$11 \frac{11}{15} - \frac{2}{3}.$							
									 	[1]
	(b)		at $\frac{3}{10} \div 6$.	s a fraction	in its simple	est form.				
									 	[2]

In the diagram, AD, AB and BC are three sides of a regular pentagon and DC is a diagonal of the pentagon.

AB is parallel to DC.


(a) Find the value of x.

$$x = \dots$$
 [2]

(b) Find the value of y.

$$y = \dots$$
 [1]

8

NOT TO SCALE

ABC is an isosceles triangle with AB = BC.

The ratio $\angle ABC : BAC = 2 : 5$.

Find $A\hat{B}C$.

$$A\hat{B}C = \dots [2]$$

9 By writing each number correct to 1 significant figure, estimate the value of

$$\frac{47.5 + 36.1}{64.9 \div 17.7}.$$

.....[2]

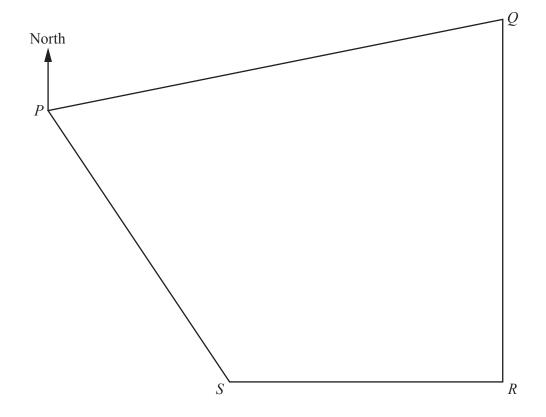
			ctors.		
(b) (Given that $1512 = 2^3 \times$	$3^3 \times 7$, find the	highest common	factor of 420 and	1512.
	has a spinner.				
The se	ections are coloured rec	l, blue, yellow o spinner landing	or green. g on red, blue or j	yellow is shown in	the table.
The se	ections are coloured red elative frequency of the	spinner landing	or green. g on red, blue or		
The so	ections are coloured recelative frequency of the Colour on spinner	spinner landing	g on red, blue or s	Yellow	the table.
he so	ections are coloured red elative frequency of the	spinner landing	g on red, blue or		
The so	ections are coloured recelative frequency of the Colour on spinner	Red 0.15	Blue 0.3	Yellow 0.2	
The so	cections are coloured redelative frequency of the Colour on spinner Relative frequency	Red 0.15	Blue 0.3	Yellow 0.2	
The so	cections are coloured redelative frequency of the Colour on spinner Relative frequency	Red 0.15	Blue 0.3	Yellow 0.2	
The se	cections are coloured redelative frequency of the Colour on spinner Relative frequency	Red 0.15	Blue 0.3	Yellow 0.2	
The se	cections are coloured redelative frequency of the Colour on spinner Relative frequency	Red 0.15	Blue 0.3	Yellow 0.2	Green
The so The re	cetions are coloured redelative frequency of the Colour on spinner Relative frequency Find the relative frequency	Red 0.15 ncy of the spinn	Blue 0.3	Yellow 0.2	Green
The so The ref. (a) F	Colour on spinner Relative frequency Find the relative frequency Azra spins the spinner 1	Red 0.15 ncy of the spinn 50 times.	Blue 0.3 er landing on gre	Yellow 0.2	Green
The so The re (a) If (b) A	cetions are coloured redelative frequency of the Colour on spinner Relative frequency Find the relative frequency	Red 0.15 ncy of the spinn 50 times.	Blue 0.3 er landing on gre	Yellow 0.2	Green
The so The re (a) If (b) A	Colour on spinner Relative frequency Find the relative frequency Azra spins the spinner 1	Red 0.15 ncy of the spinn 50 times.	Blue 0.3 er landing on gre	Yellow 0.2	Green
The so The re (a) If (b) A	Colour on spinner Relative frequency Find the relative frequency Azra spins the spinner 1	Red 0.15 ncy of the spinn 50 times.	Blue 0.3 er landing on gre	Yellow 0.2	Green

12 (a) Represent the inequality $-4 \le x < 2$ on the number line below.

[1]

(b) Solve the inequality.

$$10-n < 2n-5$$


.....[2]

13 Sophie cycles 2600 metres in 12 minutes.

Work out Sophie's average speed in kilometres per hour.

.....km/h [3]

14 The scale drawing shows a plot of land, *PQRS*. The scale is 1 cm to 20 m.

Scale: 1 cm to 20 m

(a) A path crosses the land.

The path is equidistant from SP and SR.

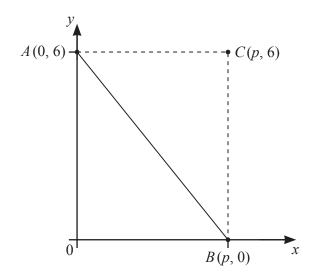
Use a straight edge and compasses only to construct the path.

[2]

(b) Priya walks from point P to the path on a bearing of 104°.

(i) Draw a line to represent Priya's walk.

[1]


(ii) Find the actual distance from *P* to where Priya meets the path.

..... m [2]

(c) A car park is to be built on the plot of land.
On the scale drawing the area of the car park will be 2 cm².

Find the actual area of the car park.

..... m² [2]

NOT TO SCALE

The diagram shows the points A(0, 6), B(p, 0) and C(p, 6). The equation of the line AB is 3y+4x=18.

(a) Find the value of p.

n –	Г13
ρ –	

(b) Write down the three inequalities that define the region **inside** triangle *ABC*.

......[2]

16	<i>P</i> is <i>M</i> is	the j	poin mid	t(-2, point	1) and of the	d Q is the line PQ	the poi	nt (6, 13	3).							
	(a)	Fine	d the	coor	dinate	s of <i>M</i> .										
	(b)	(i)	Fir	nd the	gradie	ent of th	ne line	PQ.				(,)	[1]
		(ii)	Wr	ite do	wn the	e gradie	ent of a	a line th	at is pe	rpendi	cular to		Q.	 		[2]
													 	 		[1]

17	(a)	Simplify.
		$(x^2)^3$

.....[1]

(b)
$$t^{-2} = 9$$

Find the value of *t*.

$$t = \dots$$
 [1]

$$(c) \sqrt{5} \times 5^0 = 5^k$$

Find the value of k.

$$k = \dots$$
 [1]

18	x is directly proportional to the square of $(y+1)$
	When $y = 2$, $x = 45$.

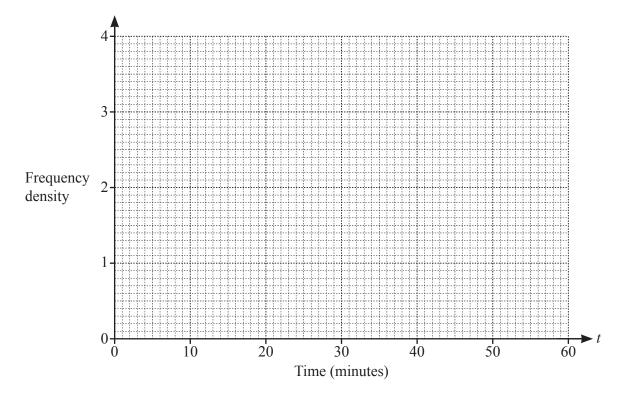
Find x when y = 4.

$$x = \dots$$
 [2]

19 Solve.

$$\frac{3x-1}{6} + \frac{x+2}{4} = \frac{5}{3}$$

$$x = \dots$$
 [4]


20 The table shows some information about the times each of 100 children spent reading in one day.

Time (t mins)	$x < t \le 30$	$30 < t \leqslant 40$	$40 < t \leqslant 45$	$45 < t \le 60$	
Frequency	32	23	15	30	
Frequency density	1.6	2.3			

(a) Find the value of x in the interval $x < t \le 30$.

$$x = \dots$$
 [1]

(b) On the grid, draw a histogram to represent the data for the 100 children.

[3]

21
$$f(x) = 1 + \frac{3x}{2}$$
 $g(x) = \frac{2}{1-x}$

(a) Find
$$f^{-1}(x)$$
.

$$f^{-1}(x) = \dots$$
 [3]

(b) Solve
$$g(x) = f(-4)$$
.

$$x = \dots$$
 [3]

22 Factorise.

(a)
$$9p^2 - q^2$$

(b)
$$ac - 3bc + a - 3b$$

23	Adam	and E	Ben buv	tickets	for the	cinema	and tl	he theatre

(a) Adam buys 5 cinema tickets and 4 theatre tickets. Ben buys 7 cinema tickets and 9 theatre tickets.

Complete the matrix, **X**, to represent this information.

Cinema Theatre
$$\mathbf{X} = \left(\begin{array}{cc} & & \\ & & \\ & & \\ \end{array} \right) \begin{array}{c} \text{Adam} \\ \text{Ben} \end{array}$$

[1]

(b) Cinema tickets cost \$11 each and theatre tickets cost \$30 each. The matrix **Y** represents this information.

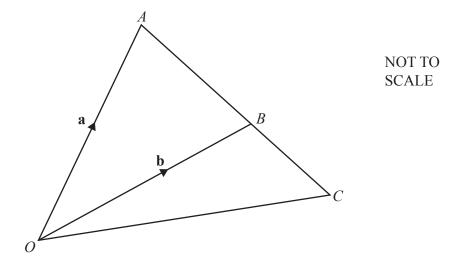
$$\mathbf{Y} = \begin{pmatrix} 11\\30 \end{pmatrix}$$

(i) P = XY

Find the matrix **P**.

$$\mathbf{P} = [2]$$

(ii) Explain what the elements in matrix **P** represent.


[1

24
$$\sin x^{\circ} = \sin 50^{\circ} \text{ and } 90 < x < 180.$$

Find the value of x.

$$x = \dots$$
 [1]

25 Simplify
$$\frac{x^2 - 4x}{x^2 - x - 12}$$
.

 \overrightarrow{OAC} is a triangle and B is a point on AC such that AB: BC = 3:2. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

(a) Find \overrightarrow{OC} in terms of a and b, giving your answer in its simplest form.

$$\overrightarrow{OC} = \dots$$
 [3]

(b) D is a point on OC such that $\overrightarrow{OD} = \mathbf{b} - \frac{2}{5}\mathbf{a}$.

Show that OABD is a trapezium.

BLANK PAGE

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.