CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

## MARK SCHEME for the October/November 2012 series

## 4024 MATHEMATICS (SYLLABUS D)

4024/22 Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



| VANANA/ dv | (nomiononoro com |
|------------|------------------|
|            |                  |
|            | namicpapers.com  |

| Page 2 | Mark Scheme                         | Syllabus | Paper |
|--------|-------------------------------------|----------|-------|
|        | GCE O LEVEL – October/November 2012 | 4024     | 22    |

| Qu | Answers                          | Mar<br>k | Part Marks                                                                                                                  |
|----|----------------------------------|----------|-----------------------------------------------------------------------------------------------------------------------------|
| 1  | (a) 57(.0°)                      | 2        | M1 for $\tan A\hat{C}B = \frac{10}{6.5}$ oe                                                                                 |
|    | <b>(b)</b> (i) 5 m 6 cm cao      | 3        | <b>B2</b> for $(BD = )$ 15.1 or better or<br><b>M1</b> for $BD^2 = 16.4^2 - 6.5^2$ and/or<br><b>SC1</b> for their $BD - 10$ |
|    | (ii) 66.6 or 66.7 (°)            | 2ft      | e.g. accept $\tan^{-1} \frac{\text{their } DB}{6.5}$                                                                        |
|    |                                  |          | <b>M1</b> for $\cos D\hat{C}B = \frac{6.5}{16.4}$ oe                                                                        |
| 2  | (a) $(2x-1)(2x+1)$               | 1        |                                                                                                                             |
|    | <b>(b) (i)</b> 3                 | 1        |                                                                                                                             |
|    | (ii) $(R = ) \frac{2Q}{P-1}$ asc | 3        | SC2 for $\frac{2Q}{P+1}$ or $-\frac{2Q}{P+1}$                                                                               |
|    |                                  |          | <b>M2</b> for $\frac{2Q}{R} = P - 1$ or $PR - R = 2Q$ or                                                                    |
|    |                                  |          | <b>M1</b> for $P = \frac{2Q}{R} + 1$ or $PR = 2Q + R$ soi                                                                   |
|    | (c) $x = 7  y = -1$              | 3        | <ul><li>B2 for one correct</li><li>M1 for eliminating one variable</li></ul>                                                |
|    | (d) (i) $3.2x + 16$              | 2        | <b>B1</b> for $(x + 20) \times 0.8$ oe seen                                                                                 |
|    | (ii) $x > 73.125$ isw            | 2        | <b>B1</b> for their answer to (i) $> 250$                                                                                   |
|    | (iii) 74                         | 1ft      |                                                                                                                             |
| 3  | (a) (i) 43.2 (0) seen isw        | 1        |                                                                                                                             |
|    | (ii) 25 isw                      | 2        | SC1 for answer 125%<br>M1 for Figs $\frac{45-36}{36}$                                                                       |
|    | (iii) 3.5                        | 2        | <b>M1</b> for Figs $\frac{3000 \times 0.45 - 1302.75}{3000 \times 0.45}$                                                    |

|   |     |                    |                                  |              | WW                                          | w.dynamicpa                                                                                                                                                   | pers.com           |
|---|-----|--------------------|----------------------------------|--------------|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
|   | •   |                    | Mark Scheme                      |              |                                             | Syllabus                                                                                                                                                      | Paper              |
|   |     |                    | GCE O LEVEL – October/Nov        | <u>ember</u> | 2012                                        | 4024                                                                                                                                                          | 22                 |
|   | (b) | 0.6 (0)            | ,                                | 3            | M1 for a<br>A1 for 5<br>B1 for d<br>depende | $5.40 - \frac{5.40 \times 100}{112.5}$ oe<br>$x + \frac{12.5}{100} x = 5.40$ o<br>.40 - their x ft or<br>ivision by 112.5 sec<br>ent<br>nultiplication by 12. | e and<br>en and    |
| 4 | (a) | (i) 1              | 02                               | 1            |                                             |                                                                                                                                                               |                    |
|   |     |                    | ) ft (102)                       | 1ft          |                                             |                                                                                                                                                               |                    |
|   |     | (iii) 1            | 80 – <b>(ii)</b> ft (78)         | 1ft          |                                             |                                                                                                                                                               |                    |
|   | (b) | (i) S              | imilar triangles established www | 2            | <b>B1</b> for a                             | correct pair of equa                                                                                                                                          | al angles          |
|   |     | <b>(ii)</b> 7.     | 2                                | 2            | <b>B1</b> for c<br>5 : 2 soi                | orresponding sides                                                                                                                                            | in the ratio       |
| 5 | (a) | 220                |                                  | 3            |                                             | $\frac{150}{360} \times 2 \pi r$ and<br>heir arc $AD$ + their a                                                                                               | arc $BC + 50$      |
|   | (b) | 2130               |                                  | 3            | M2 for •                                    | $\frac{150}{360} \pi (45^2 - 20^2) = \frac{150}{360} \pi r^2$                                                                                                 | or                 |
|   | (c) | 8.33               |                                  | 2            | <b>M1</b> for 2                             | $2\pi r = their \operatorname{arc} AD f$                                                                                                                      | rom <b>(a)</b> soi |
| 6 | (a) | 158 w              |                                  | 3            | 30 × 157                                    | $0 \times 135 + 30 \times 145$<br>7.5 + 35 × 165 + 25<br>ivision by 10 + 30 -                                                                                 | $\times$ 180 and   |
|   | (b) | (i) <u>-</u>       | $\frac{50}{50}$ oe isw           | 1            |                                             |                                                                                                                                                               |                    |
|   |     | (ii) $\frac{1}{2}$ | $\frac{4800}{2350}$ oe isw       | 2            |                                             | $\frac{60}{50} \times \frac{40}{149} \text{ seen or} \\ \times \frac{40}{150} \ (= \frac{4800}{22500} = 0)$                                                   | ).213 )            |

.

www.dynamicpapers.com

|   | Page | 4                  | Mark Scheme                         |            |     | ~~~~                                      | Syllabus                                                                                    | Paper                 |
|---|------|--------------------|-------------------------------------|------------|-----|-------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|
|   |      |                    | GCE O LEVEL – October/November 2012 |            |     | 4024                                      | 22                                                                                          |                       |
| L |      |                    |                                     | 0000000000 |     |                                           | 7767                                                                                        |                       |
|   | (c)  | Correc             | et Histogram                        |            | 3   | H1 for 1<br>After 0<br>SC2 for            | correct additional<br>correct additional<br>all additional heig<br>3 additional heigh       | column<br>hts correct |
| 7 | (a)  | (i) 8              | 74                                  |            | 3   |                                           | (2) $\pi r^2 + 2\pi r \times 8$ o<br>either (2) $\pi r^2$ or $2\pi$                         |                       |
|   |      | (ii) 3             | 070                                 |            | 2ft | <b>M1</b> for <b>1</b><br><b>B1</b> for ÷ | Figs [( <i>their</i> 874 + 1<br>- 10 <sup>4</sup>                                           | 150) × 3] or          |
|   | (b)  | (i) 7 <sup>°</sup> | 7 (.0)                              |            | 1   |                                           |                                                                                             |                       |
|   |      | (ii) 5             | 00                                  |            | 3ft |                                           | $\pi R^2 - 4\pi r^2 + 4(\mathbf{b})(\mathbf{i})$<br>$\pi R^2 - 4\pi r^2$ or $4(\mathbf{b})$ |                       |
|   |      | <b>(iii)</b> 24    | 410                                 |            | 3   | <b>M2</b> for 7                           | $\pi R^2 \times 8 - 4 \times \frac{2}{3} \times$                                            | $\pi \times r^3$ or   |
|   |      |                    |                                     |            |     | <b>M1</b> for 7                           | $\pi R^2 \times 8 \text{ or } 4 \times \frac{2}{3} \times$                                  | $\pi \times r^3$      |
| 8 | (a)  | -2.1               |                                     |            | 1   |                                           |                                                                                             |                       |
|   | (b)  | Correc             | ct plots and curve                  |            | 3   | P1 for at                                 | or 8 correct plots<br>t least 4 correct plot<br>smooth curve thro                           | ots and dependent     |
|   | (c)  | -aft               | $1 \operatorname{cao} b$ ft         |            | 2   | <b>B1</b> for a                           | t least one solution                                                                        | ı ft                  |
|   | (d)  | -3.5 to            | 0-2                                 |            | 2   | M1 for t                                  | he correct tangent                                                                          | drawn                 |
|   | (e)  | (1.7) f            | t                                   |            | 2ft | M1 for y                                  | v = x drawn.                                                                                |                       |
|   | (f)  | 1 < k ·            | < 2. ft                             |            | 2ft | <b>B1</b> for o using TF                  | ne correct end poin<br>P's.                                                                 | nt ft or clearly      |

|    |                 | 1                                            |       | ww                                                       | w.dynamicpa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
|----|-----------------|----------------------------------------------|-------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
|    | Page 5          | Mark Scheme                                  |       | 0040                                                     | Syllabus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Paper                                  |
|    |                 | GCE O LEVEL – October/Nov                    | ember | 2012                                                     | 4024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 22                                     |
| 9  | (a) 42.3        |                                              | 3     |                                                          | $\frac{30\sin 58}{\sin 37} \text{ or}$ $\frac{AB}{\sin 58} = \frac{30}{\sin 37} \text{ oe}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        |
|    | <b>(b)</b> 83.9 |                                              | 4     | M2 for 3 or                                              | $\sqrt{30^{2} + 64^{2} - 2 \times 30^{2}}$ $30^{2} + 64^{2} - 2 \times 30^{2}$ $30^{2} + 64^{2} + 2 \times 30^{2}$ $4.4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | < 64cos (180–58)                       |
|    | (c) 814         |                                              | 2     | M1 for -                                                 | $\frac{1}{2}$ × 30 × 64sin((18)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 80 – )58) oe                           |
|    | (d) 17.2        |                                              | 3     | M1 for                                                   | $\frac{B0\sin 58\tan 34 \text{ or}}{\frac{H}{their AP}} = \tan 34 \text{ or}$ $P = 30\sin 58 (= 25)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| 10 | (a) Cong        | ruency established                           | 3     | PB or                                                    | $\widehat{AP} = P\widehat{B}Q$ and AP<br>ne equal angle or ei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                      |
|    | (b) (i) 4       | 0-x                                          | 1     |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|    |                 | $y = 2x^{2} - 80x + 1600$ correctly obtained | 2     | <b>M1</b> for <sup>1</sup> / <sub>2</sub>                | $\frac{1}{2} \times x \times (\mathbf{b})(\mathbf{i}) \text{ or } \sqrt{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\overline{40-x}^2 + x^2 \text{ seen}$ |
|    | (c) (i) x       | $x^2 - 40x + 250 = 0$                        | 1     |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                        |
|    | (ii) 7          | 7.8 32.2                                     | 3     | <b>B1</b> for $$<br><b>B1</b> for $-$<br>After <b>B0</b> | .8 and 32.2 or better<br>$\sqrt{(-40)^2 - 4 \times 1 \times 250}$<br>$(-40) \pm \sqrt{their\ 600}$<br>$2 \times 1$<br><b>B1</b> , allow <b>SC1</b> for<br>ts or <b>B1</b> for one connected as a set of the | soi and<br>soi and<br>a correct ft for |
|    | (d) Accur       | ately drawn quadrilaterals                   | 2ft   | <b>B1</b> for o                                          | ne correct ft or both                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | h mirror images                        |

|    | Page         | 6     | Mark Scheme                                                                             |                                     |                 |                                          | pers.com<br>Paper |
|----|--------------|-------|-----------------------------------------------------------------------------------------|-------------------------------------|-----------------|------------------------------------------|-------------------|
|    | - <b>J</b> - | -     |                                                                                         | GCE O LEVEL – October/November 2012 |                 |                                          | 22                |
| 11 | (a)          | (i)   | (a) $-p+q$                                                                              | 1                                   |                 |                                          |                   |
|    |              |       | <b>(b)</b> $\frac{1}{3}(4\mathbf{q}-\mathbf{p})$ oe isw                                 | 1ft                                 |                 |                                          |                   |
|    |              |       | (c) $2q - \frac{1}{2}p$ oe isw                                                          | 1                                   |                 |                                          |                   |
|    |              | (ii)  | <i>E</i> , <i>C</i> and <i>D</i> lie on a straight line<br>CD is $\frac{2}{3}$ of ED oe | 2                                   | <b>B1</b> for e | either                                   |                   |
|    | (b)          | (i)   | Correct triangle                                                                        | 2                                   |                 | wo correct vertices size and orientation | or triangle       |
|    |              | (ii)  | Correct triangle                                                                        | 2                                   |                 | wo correct vertices size and orientation | or triangle       |
|    |              | (iii) | Rotation clockwise 90 centre (0,3)                                                      | 3                                   | _               | otation soi and<br>clockwise 90 or cent  | tre (0,3)         |