CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the May/June 2015 series

4024 MATHEMATICS (SYLLABUS D)

4024/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

		www.dunamienanore.com
Page 2	Mark Scheme	Syllabus Paper
	GCE O LEVEL – May/June 2015	4024 12

Γ

Question	Answers	Mark	Part Marks
1 (a)	21	1	
(b)	$\frac{9}{20}$ oe	1	
2	$\frac{7}{12} \ \frac{5}{8} \ 0.64 \ \frac{13}{20} \ 0.7$	2	B1 for 3 correct Or completely reversed answer Or SC1 for 0.65, 0.583, 0.625 seen
3	4	2	M1 for $\frac{1}{2} \times 12 \times (b+4b)$ oe Or B1 for correct use of $\frac{1}{2}(a+b)h$
4	11	2	B1 for answer $\frac{11}{60}$ Or $\frac{5}{12} \times 60$ and $\frac{2}{5} \times 60$ soi
5	3 hours 30 minutes	2	B1 for 20 55 oe seen Or M1 for 12 25 – (05 25 – 5) Or (12 25 + 5) – 05 25 soi
6	500	2	B1 for two from 30, 2 and 0.9 seen
7	$\frac{96}{64}$ oe isw	2	B1 for $k = 96$ soi Or M1 for $24 \times 2^2 = y \times 8^2$ Or $y = (\text{their k})/8^2$
8 (a)	<i>p</i> , <i>q</i> , <i>r</i> , <i>s</i> , <i>t</i> , <i>u</i>	1	
(b)	<i>s</i> , <i>v</i>	1	
9 (a)	5.21×10^{-6}	1	
(b)	3×10^5	1	
10	$p = 3.8$ $q = 77^{\circ}$	2	B1 for one correct

Page 3		Mark Schem	e	www.dynamicpar)ers_com Paper
		GCE O LEVEL – May	egnabae		12
11		(1, 6) (1, 5) (1, 4)	2	B1 for 2 correct no extra: Or 3 correct no more that After B0 allow SC1 for 1 = 7 drawn on the diagram	n 5 extras ines $x = 2$ and y
12	(a)	-2	1		
	(b) (i)	-3	1		
	(ii)	-8, 8	1	Both correct	
13	(a)	$2^2 \times 3 \times 5$	1		
	(b)	15	1		
	(c)	9	1		
14	(a)	Correct triangle with arcs	2	B1 for correct triangle w arc After B0 allow SC1 for t arcs with 5 cm and 6 cm f	riangle with
	(b)	128 to 133°	1		
15	(a)	6	1		
	(b)	$b = \frac{8a - c^2}{3} \text{ oe}$	2	M1 for $c^2 = 8a - 3b$	
16	(a) (i)	9	1		
	(ii)	$\frac{1}{3}$	1		
	(b)	$\frac{1}{16x^4}$	1		
17	(a)	Stretch y-axis invariant/parallel to x-axis and factor 4	2	B1 for Stretch	
	(b)	$\frac{x}{4}$	1		
18	(a)	pq(p-1)	1		
	(b) (i)	(5x-4)(x+1)	1		
	(ii)	0.8 oe , -1	1	Or FT their factorisation	

Page 4		Mark Scheme		www.dynamicpar Syllabus		Ders_com Paper
		GCE O LEVEL – May/Ju	ne 2015		4024	12
19	(a)	1240	2	M1 for $8 \times 140 + 10 \times (8 + \frac{50}{100} \times 8)$		$3 + \frac{50}{100} \times 8$) isw
				After or 12	• B0 allow SC1 for a 80	answer of 1160
	(b)	276	2	B1 fo	or $240 \times 0.03 \times 5$ of	e seen
20	(a) (i)	27 cao	1			
	(ii)	5 cao	2	B1 fo	or 30 ± 0.2 and $25 \pm$	0.2 seen
	(b)	Median 28, IQR = 5	1	FT th	neir (a)(i) + 1 and th	eir (a)(ii)
21	(a)	$\begin{pmatrix} -1 & 9 \\ -5 & 13 \end{pmatrix}$	2	B1 fo	or 2 or 3 correct eler	ments
	(b) (i)	2.5 oe	1			
	(ii)	$0.5\begin{pmatrix} -1 & 2\\ -2.5 & 3 \end{pmatrix}$ isw oe	1	If 0 s	neir (b)(i) cored in (b)(i) and ct FT adjoint matrix	
				$\left(-t\right)$	$ \begin{array}{c} -1 & 2\\ heir(bi) & 3 \end{array} $ is w	
22	(a)	0.25	1			
	(b)	32	1FT	FT 8	÷ their (a) soi	
	(c)	1.9	2FT		.6 × their (a) for figs their (a) × fi	gs 76 soi

		www.dynamicna	nore com
Page 5	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – May/June 2015	4024	12

Γ

			1
(a)	$\frac{1}{2} \le x < 6 \text{ isw}$	2	B1 for $x < 6$ or $x \ge \frac{1}{2}$ Or for $2x < 12$ and $2x \ge 1$ Or for $x = 6$ and $x = \frac{1}{2}$
(b)	x = 5, y = -3	3	B2 for either <i>x</i> or <i>y</i> correct with supporting working Or M1 for correct method to eliminate one variable. And A1FT for correct evaluation to find the other variable Or after B0 scored, allow SC1 for 2 correct values but no working shown or correct substitution and evaluation to find the other variable using one of the original equations
(a)	h = 4r	2	Answer only is 0. M1 for either version of the full method, that can be accepted in the form $2 \times \frac{2}{3}\pi r^3 = \frac{1}{3}\pi r^2 h \text{ or } \frac{4}{3}\pi r^3 = \frac{1}{3}\pi r^2 h$ After B0 , allow SC1 for $h = r$
(b)	17	2FT	M1 for (their h) ² + r ²
(c)	$\pi r^2 (2 + \sqrt{17})$ oe	1FT	FT $\pi r^2 (2 + \sqrt{their 17})$
(a) (i)	b – a	1	
(ii)	3 b – 2 a	1	
(b) (i)	$\frac{4}{3}$ a	2FT	M1 for such as $\overrightarrow{BO} + \overrightarrow{OC} + \overrightarrow{CE}$ Or $BD - ED$ or $-b + a + AE$ Or B1 for $(\overrightarrow{CE}) = \pm \frac{1}{3}$ their (a)(ii) Or $(\overrightarrow{DE}) = \pm \frac{2}{3}$ their (a)(ii)
(ii)	trapezium	1	
(a) (i)	95 – 6 <i>n</i> oe isw	2	B1 for $-6n$ seen
(ii)	16 cao	1	
(b) (i)	2 <i>n</i> – 3	2	M1 for $(n + 1)^2 - 4(n + 1)$ seen
(ii)	39 cao	1	
	 (b) (a) (b) (c) (a) (i) (i)	2 (b) $x = 5, y = -3$ (a) $h = 4r$ (a) $h = 4r$ (b) 17 (c) $\pi r^2 (2 + \sqrt{17})$ oe (a) (i) (b) 17 (c) $\pi r^2 (2 + \sqrt{17})$ oe (a) (i) (b) 3b - 2a (b) (i) $\frac{4}{3}a$ (ii) trapezium (a) (i) (ii) 95 - 6n oe isw (ii) 16 cao (b) (i) (ii) 2n - 3	2(b) $x = 5, y = -3$ 3(a) $h = 4r$ 2(b) 17 $2FT$ (c) $\pi r^2 (2 + \sqrt{17})$ oe $1FT$ (a)(i) $b - a$ 1(ii) $3b - 2a$ 1(b)(i) $\frac{4}{3}a$ $2FT$ (iii)trapezium1(a)(i) $95 - 6n$ oe isw2(ii) 16 cao1(b)(i) $2n - 3$ 2