
Centre Number	Candidate Number Nam	www.dynamicpapers.com
UNIVER	SITY OF CAMBRIDGE IN General Certificate of Ed	TERNATIONAL EXAMINATIONS ucation Ordinary Level
MATHEMA	ΓICS (SYLLABUS D)	4024/01
Paper 1		May/June 2005
	swer on the Question Paper. erials: Geometrical instruments	s 2 hours
Write in dark blue or bla You may use a pencil fe	per, candidate number and nam ack pen in the spaces provided o or any diagrams or graphs. per clips, highlighters, glue or co	on the Question Paper.
Answer all questions.		d of each question or part question.
	vorking will result in loss of mark	in the space below that question.
The total of the marks f	IC CALCULATORS NOR MA	THEMATICAL TABLES MAY BE USED IN TH
The total of the marks f	IC CALCULATORS NOR MA	THEMATICAL TABLES MAY BE USED IN TH

For Examiner's Use

		www.dynamicpapers.com
		3
4	A is	due North of O. B A
	(a)	A ship sailed from <i>O</i> to <i>B</i> , where $A\hat{O}B = 12^{\circ}$. Write down the bearing of <i>B</i> from <i>O</i> .
	(b)	At <i>B</i> , the ship turned and sailed to <i>C</i> , where $O\hat{B}C = 50^{\circ}$. Calculate the bearing of <i>C</i> from <i>B</i> .
		Answer (a)[1]
		<i>(b)</i>
5	(a)	When Peter went to Hong Kong, he changed £50 into \$616. Calculate what one British pound (£) was worth in Hong Kong dollars (\$).
	(b)	It takes 8 hours for 5 people to paint a room. How long would it take 4 people?
		Answer (a) $\pounds 1 = $ \$[1]
		Answer (a) $\pounds 1 = $ [1] (b)h [1]
6	(a)	
6	(a) (b)	(b)h [1] The population of a city is given as 280 000, correct to the nearest ten thousand.
6	. ,	(b)h [1]The population of a city is given as 280 000, correct to the nearest ten thousand. State the greatest possible error in the given value.The dimensions of a rectangular card are 7 cm by 4 cm, correct to the nearest centimetre.
6	. ,	(b)h [1] The population of a city is given as 280 000, correct to the nearest ten thousand. State the greatest possible error in the given value. The dimensions of a rectangular card are 7 cm by 4 cm, correct to the nearest centimetre. Calculate the smallest possible perimeter of the card.
6	. ,	<i>(b)</i> h [1] The population of a city is given as 280 000, correct to the nearest ten thousand. State the greatest possible error in the given value. The dimensions of a rectangular card are 7 cm by 4 cm, correct to the nearest centimetre.

7

The number of hours worked each day by Adam and Brenda is shown in the table.

	Day 1	Day 2	Day 3	Day 4	Day 5	Day 6
Adam	7	5	8	9	8	0
Brenda	0	8	9	9	7	5

The number of hours for which they are paid is calculated in the following way. On each of days 1 to 5, every hour worked after the first 7 hours is counted as $1\frac{1}{2}$ hours. On day 6, every hour worked is counted as 2 hours.

- (a) Calculate the total number of hours for which Adam was paid.
- (b) The rate of pay is \$14.50 per hour. How much did Brenda earn on day 6?

Answer (a)h [1]

(b) \$.....[1]

 $\mathbf{f}(x) = \frac{2x-1}{3}.$ 8

Find an expression for $f^{-1}(x)$.

For Examiner's Use

Answer $f^{-1}(x) = \dots [2]$

For Examiner's

Use

For
Examiner's
Use

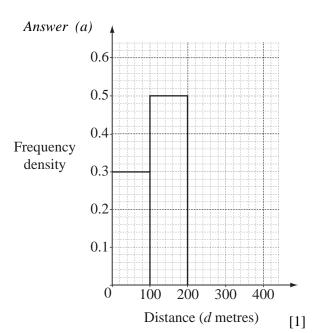
9 Solve the simultaneous equations

3x + y = 95,x + y = 29.

	Answer $x =$ [2]
10	Green Line buses run every 10 minutes. Red Line buses run every 20 minutes. Purple Line buses run every 35 minutes. One bus from each Line leaves the city centre at 09 00. After how many minutes will buses from all three Lines next leave the city centre at the same time?

For Examiner's

11


Use

One hundred children were asked how far they could swim. The results are summarised in the table.

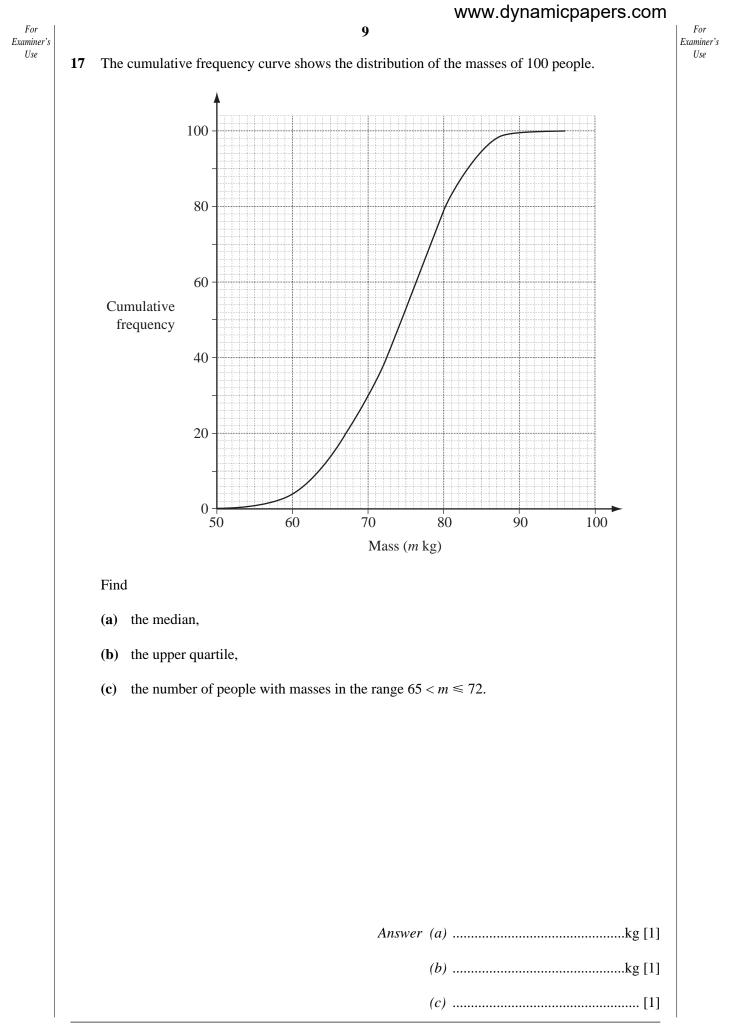
Distance (<i>d</i> metres)	$0 < d \le 100$	$100 < d \le 200$	$200 < d \le 400$
Number of children	30	50	20

6

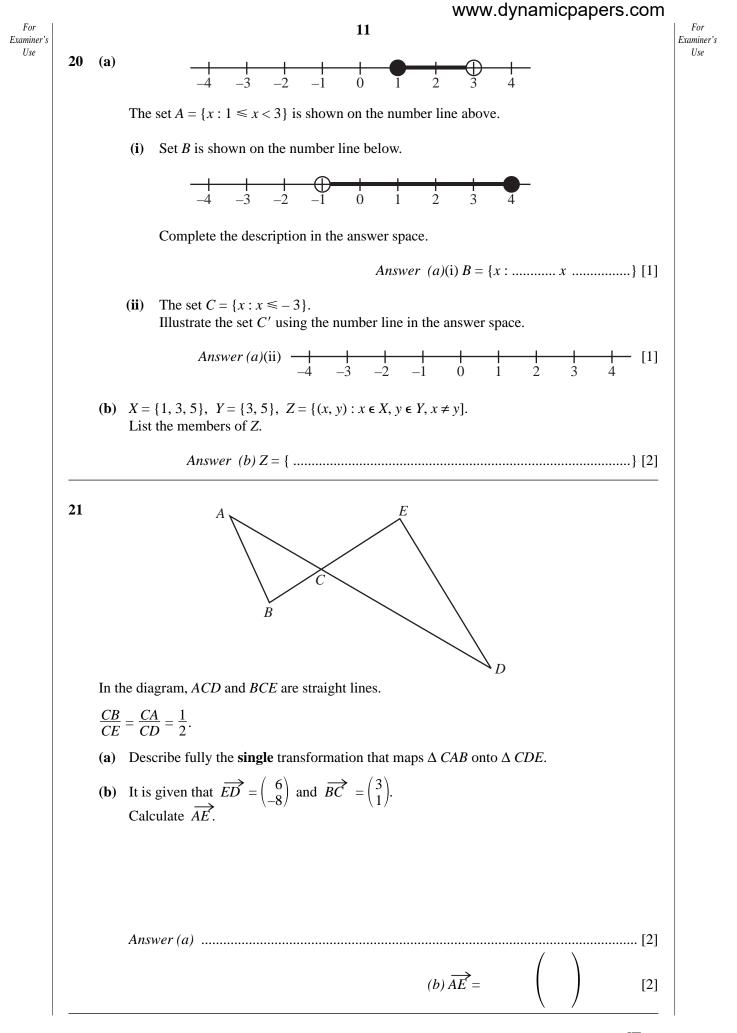
(a) The histogram in the answer space represents part of this information. Complete the histogram.

(b) A pie chart is drawn to represent the three groups of children. Calculate the angle of the sector that represents the group of 20 children.

ForExaminer's Use


For Examiner's Use

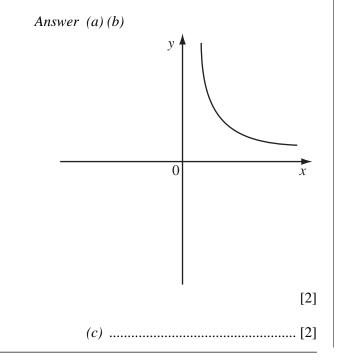
		7
12	(a)	A TV programme list shows that a film begins at 21 55. The film lasts for 100 minutes. At what time will it end?
		Express your answer using the 24 hour clock.
	(b)	The times taken by an athlete to run three races were 3 minutes 59.1 seconds, 4 minutes 3.8 seconds and 4 minutes 1.6 seconds. Calculate the mean time.
		Answer (a)[1]
		(<i>b</i>) minutes seconds [2]
13	(a)	<i>P</i> is the point $(-3, 3)$ and <i>Q</i> is the point $(13, -2)$. Find the coordinates of the midpoint of <i>PQ</i> .
		Answer (a) (,
	(b)	The line $x - 3y = 2$ is shown on the diagram in the answer space. The line $x - 3y = k$ cuts the <i>y</i> -axis at the point (0, -4).
		(i) Draw the line $x - 3y = k$ on the diagram.
		(ii) Calculate the value of k .
		Answer $(b)(i)$ y
		4-
		2
		-2 0 2 4 6 8 10 12 14 x
		_4-
		[1]
		(ii) $k = \dots [1]$

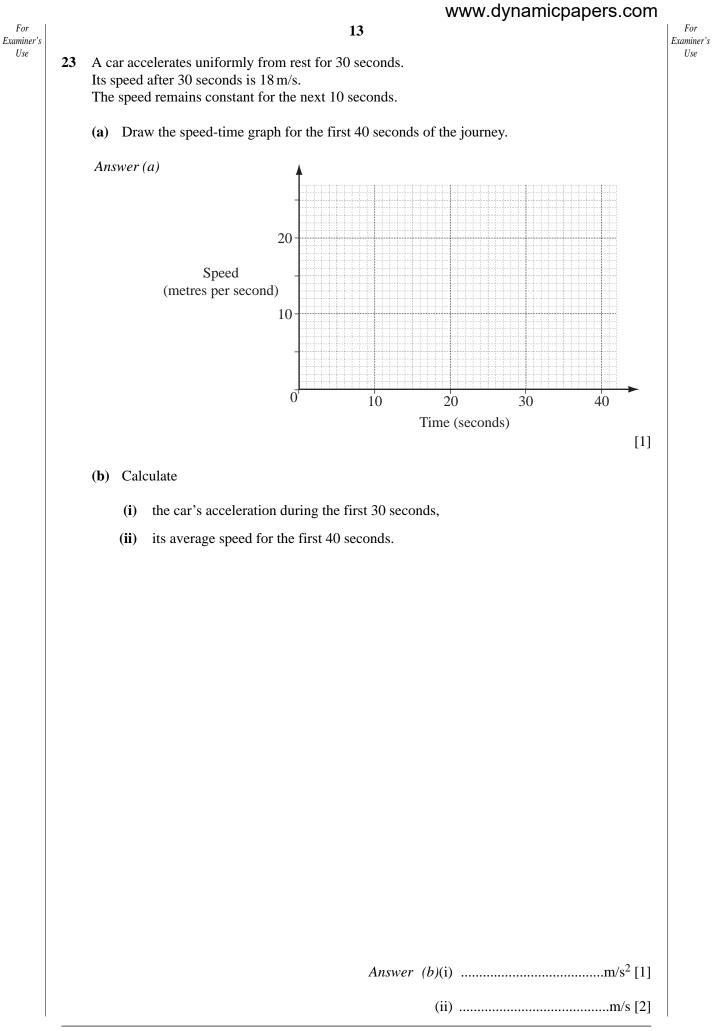

www.dynamicpapers.com

For
Examiner's
Use

			8	
14	TA a	and S are points on a circle, centre O. and TB are tangents. $B = 52^{\circ}$.		52° T
	Calc	culate		
	(a)	AÔB,		
	(b)	OBÂ,		
	(c)	AŜB.		s
			Answer (d	$A \hat{O}B = \dots $ [1]
			(1	b) $\hat{OBA} = \dots [1]$
			(0	$E = A\hat{S}B = \dots [1]$
15	It is	given that $N = 87 \times 132$.		
	(a)	Complete the statements in the answer	space.	
			Answer (a	<i>i</i>) $88 \times 132 = N + \dots$ [1]
				$87 \times 131 = N - \dots$
	(h)	Hence evaluate $88 \times 132 - 87 \times 131$.		
	(0)			
			Answer (1	5)[
16	(a)	The number 222.222 is written in the a	nswer space.	b)[
16	(a)	The number 222.222 is written in the a Circle the digit which represents the va	nswer space. lue 2×10^{0} .	b)[
16	(a) (b)	The number 222.222 is written in the a Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple	nswer space. lue 2×10^{0} .	b)[
16	(a) (b)	The number 222.222 is written in the a Circle the digit which represents the va	nswer space. lue 2×10^{0} .	⁵) [
16	(a) (b)	The number 222.222 is written in the a Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple	nswer space. lue 2×10^{0} .	b)[
16	(a) (b)	The number 222.222 is written in the a Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple	nswer space. lue 2×10^{0} .	
16	(a) (b)	The number 222.222 is written in the a Circle the digit which represents the val Write 5×10^{-2} as a fraction in its simple	nswer space. lue 2×10^{0} . lest form.	

10 8 <i>OAB</i> is a sector of a circle with centre <i>O</i> and radius 8 cm. $AOB = x^{\circ}$. (a) Write down an expression, in terms of <i>x</i> and π , for the area of the sector <i>OAB</i> . (b) <i>PQR</i> is a semicircle of radius 4 cm. The area of the sector <i>OAB</i> is $\frac{1}{3}$ of the area of this semicircle. Calculate the value of <i>x</i> . <i>Answer</i> (<i>a</i>)
A $\hat{OB} = x^{\circ}$. (a) Write down an expression, in terms of x and x, for the area of the sector <i>OAB</i> . (b) <i>PQR</i> is a semicircle of radius 4 cm. The area of the sector <i>OAB</i> is $\frac{1}{3}$ of the area of the sector <i>OAB</i> is $\frac{1}{3}$ of the area of this semicircle. Calculate the value of x. <i>Answer</i> (a)
(a) Where down an expression, in terms of x and x, for the area of the sector <i>OAB</i> . (b) <i>PQR</i> is a semicircle of radius 4 cm. The area of the sector <i>OAB</i> is $\frac{1}{3}$ of the area of this semicircle. Calculate the value of x. <i>Answer (a)</i> (b) $x = \dots $
The area of the sector <i>OAB</i> is $\frac{1}{3}$ of the area of this semicircle. Calculate the value of <i>x</i> . <i>Answer</i> (<i>a</i>)
(b) $x = \dots [2]$ 9 ABCDE is a pyramid. The base BCDE is a square of side 10 cm. The sloping faces are isosceles triangles. AB = AC = AD = AE = 13 cm. (a) Calculate the area of the sloping face ABC. (b) The pyramid ABCDE is joined to an identical pyramid BCDEF to form the solid ABCDEF. (i) Calculate the surface area of the solid ABCDEF. (ii) Describe fully the locus of all points which are equidistant from A and F. (b) The pyramid ABCDE is previous of all points which are equidistant from A and F. (c) ABCDE is previous of all points which are equidistant from A and F. (c) ABCDE is previous of all points which are equidistant from A and F. (c) Answer (a)
 9 ABCDE is a pyramid. The base BCDE is a square of side 10 cm. The sloping faces are isosceles triangles. AB = AC = AD = AE = 13 cm. (a) Calculate the area of the sloping face ABC. (b) The pyramid ABCDE is joined to an identical pyramid BCDEF to form the solid ABCDEF. (i) Calculate the surface area of the solid ABCDEF. (ii) Describe fully the locus of all points which are equidistant from A and F.
9 ABCDE is a pyramid. The base BCDE is a square of side 10 cm. The sloping faces are isosceles triangles. AB = AC = AD = AE = 13 cm. (a) Calculate the area of the sloping face ABC. (b) The pyramid ABCDE is joined to an identical pyramid BCDEF to form the solid ABCDEF. (i) Calculate the surface area of the solid ABCDEF. (ii) Describe fully the locus of all points which are equidistant from A and F. $Answer (a) = 2 Cm^2 [2]$ (b)(i)
(<i>b</i>)(i)cm ² [1]
VII <i>1</i>




For

Examiner's

Use

- 22 (a) The diagram in the answer space is a sketch of the graph of $y = \frac{3}{x}$ for x > 0. Complete the sketch for x < 0.
 - (b) Sketch the graph of y = x on the diagram in the answer space.
 - (c) The graphs of $y = \frac{3}{x}$ and y = x meet at x = k. Find the values of k.

14

ForExaminer's Use

- In triangle *PLQ*, PL = 14 cm, PQ = 10 cm and LQ = 7 cm. The line *PL* is drawn in the answer space.
 - Using ruler and compasses only, complete triangle *PLQ* where *Q* is above *PL*. **(a)**
 - (b) Measure and write down $P\hat{Q}L$.
 - (c) Draw a semicircle with *PL* as diameter. The line LQ produced meets the semicircle at M. Measure and write down the length of QM.
 - (d) (i) Explain why *PM* is perpendicular to *LM*.
 - Hence write down the value of $\cos P\hat{Q}L$. (ii)

Answer (a)

P	L [1]
Answer (b) Pg	$\hat{Q}L = \dots $
$(c) Q^{\dagger}$	<i>M</i> =cm [1]
(<i>d</i>)(i)	[1]
(ii)	$\cos P\hat{Q}L = \dots $

24

		www.dyr	namicpapers.con
	15		
25	The trapezium <i>PQRS</i> has one line of symmetry. $S\hat{P}Q = 120^{\circ}$.	P /120°	2
	(a) Explain why $P\hat{S}R = 60^{\circ}$.	S	R
	Answer (a)		[1]
	(b) Three trapezia, each congruent to <i>PQRS</i> , are p	laced together as sho	wn.
	A G D Show that <i>KDF</i> is an equilateral triangle.		
	Answer (b)		
	Answer (b)		
	Answer (b)		
	Answer (b) (c) Given also that $BC = 1 \text{ m}$, $AB = 4 \text{ m}$ and $DC = 1 \text{ m}$		
	 Answer (b) (c) Given also that BC = 1 m, AB = 4 m and DC = (i) the length of GB, 	5 m, find	
	Answer (b) (c) Given also that $BC = 1 \text{ m}$, $AB = 4 \text{ m}$ and $DC =$ (i) the length of GB , (ii) the ratio Area ΔKDF : Area ΔHGB ,	5 m, find	
	Answer (b) (c) Given also that $BC = 1 \text{ m}$, $AB = 4 \text{ m}$ and $DC =$ (i) the length of GB , (ii) the ratio Area ΔKDF : Area ΔHGB ,	5 m, find	
	Answer (b) (c) Given also that $BC = 1 \text{ m}$, $AB = 4 \text{ m}$ and $DC =$ (i) the length of GB , (ii) the ratio Area ΔKDF : Area ΔHGB ,	5 m, find	
	Answer (b) (c) Given also that $BC = 1 \text{ m}$, $AB = 4 \text{ m}$ and $DC =$ (i) the length of GB , (ii) the ratio Area ΔKDF : Area ΔHGB ,	5 m, find	
	Answer (b) (c) Given also that $BC = 1 \text{ m}$, $AB = 4 \text{ m}$ and $DC =$ (i) the length of GB , (ii) the ratio Area ΔKDF : Area ΔHGB ,	5 m, find	
	Answer (b) (c) Given also that $BC = 1 \text{ m}$, $AB = 4 \text{ m}$ and $DC =$ (i) the length of GB , (ii) the ratio Area ΔKDF : Area ΔHGB , (iii) the shaded area as a fraction of the area of	5 m, find of Δ KDF. wer (c)(i)	[1]
	Answer (b) (c) Given also that $BC = 1 \text{ m}$, $AB = 4 \text{ m}$ and $DC =$ (i) the length of GB , (ii) the ratio Area ΔKDF : Area ΔHGB , (iii) the shaded area as a fraction of the area of	5 m, find of Δ KDF. wer (c)(i)	

For Examiner's Use

- **26** (a) Factorise 3tx 2sx + 15ty 10sy.
 - **(b)** Solve the equation $\frac{x-2}{4} + \frac{x+1}{3} = 1$.
 - (c) Factorise $2y^2 3y 2$.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

For Examiner's Use

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.