CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0580 MATHEMATICS

0580/41

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0580	41

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working art anything rounding to soi seen or implied

Qu.	Answers	Mark	Part Marks
1	(a) (i) 126	2	M1 for $x + x + 18 + 90 = 360$ or better
	(ii) 144	1 ft	ft their $x + 18$
	(b) 16.66 to 16.67 or 16.7 oe	2	M1 for 60/360 × 100 oe (implied by answer 16.6)
	(c) (i) 22.18 to 22.19 or 22.2 oe	3	M2 for (35 + 36)/320 × 100 or B1 for 36 or 35 or 71 seen
	(ii) 58 www	2 ft	For 2ft, 114 – their (a)(ii)/360 × 140 correctly evaluated (correct or to the nearest integer) or M1 for $(360-60-72)/360 \times 180$ [114] or 56ft (their (a)(ii)/360 × 140) seen
	(d) (i) 50, 70, 100, 135	M1	At least 3 correct mid-values seen
	$(5 \times 50 + 14 \times 70 + 29 \times 100 + 32 \times 135)$ [= 8450]	M1	$\sum fx \text{ where } x \text{ is in the correct interval allow}$ one further slip
	\div 80 or their $\sum f$	M1	Depend on second method
	106 or 105.6 or 105.625 or 105.62 or 105.63 cao www	A1	isw conversion to mins/secs & reference to classes
	(ii) 1		B3 for 2.9 and 4.27
	2.9 oe		or B2 for 2.9 or 4.27
	4.27 [4.266 to 4.267] oe	4	and B1 for 1
			Or SC2 for 0.25 oe and 0.725 oe and 1.066 to 1.07 oe seen
			Or SC1 for any pair of the above seen

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0580	41

(ii) 10 correct points plotted P3 ft P2 ft for 8 or 9 correct P1 ft for 6 or 7 correct Centre of point must touch lir correct square (including bound absence of plot[s], allow curve absence of plot[s], allow curve to ruled sections (b) -4.8 to -4.6, -0.4 to -0.2, 3 to 3.1 www T+1+1 After 0 scored, SC1 for y = 2 Penalise first occurrence of company to the points absence of plot[s], allow curve to plot[s]	ndaries) ed points. In re to imply plot[s] soi
Smooth curve through all 10 points correct shape (b) -4.8 to -4.6, -0.4 to -0.2, 3 to 3.1 Within 1 mm radially of potter absence of plot[s], allow curv No ruled sections 1+1+1 After 0 scored, SC1 for y = 2 Penalise first occurrence of contract to the point of	ndaries) ed points. In re to imply plot[s] soi
Smooth curve through all 10 points correct square (including bound absence of plot[s], allow curve has expected by the correct shape (b) -4.8 to -4.6, -0.4 to -0.2, 3 to 3.1 www. C1 Within 1 mm radially of potter absence of plot[s], allow curve has expected by the correct square (including bound absence of plot[s]). Within 1 mm radially of potter absence of plot[s], allow curve has expected by the correct square (including bound absence of plot[s]). After 0 scored, SC1 for y = 2. Penalise first occurrence of correct square (including bound absence of plot[s]).	ndaries) ed points. In re to imply plot[s] soi
points absence of plot[s], allow curv No ruled sections (b) -4.8 to -4.6 , -0.4 to -0.2 , 3 to 3.1 Www 1+1+1 After 0 scored, SC1 for $y = 2$ Penalise first occurrence of co	re to imply plot[s] soi
(b) $-4.8 \text{ to } -4.6, -0.4 \text{ to } -0.2, 3 \text{ to } 3.1$ Www 1+1+1 After 0 scored, SC1 for $y = 2$ Penalise first occurrence of co	
WWW Penalise first occurrence of co	
Penalise first occurrence of co	o-ord answers in
(c) Tangent drawn at $x = -4$ T1 Not chord or daylight	
Attempts y step/ x step with correct scales M1 Dep on T1 or close attempt at	t tangent at $x = -4$
6 to 11	
(d) (i) Ruled line through (1, 15) 3 L2 for short line but correct of length correct line.	or freehand full
L1 for ruled or freehand line to not $y = 10$) or for ruled line w	• • • • • •
(ii) 2.5 to 2.7 1 isw for extra solns from wron	g curve/line
3 (a)	
$(g=)11 \qquad 1$	
(i 15) $(h =) 5$ If t ft 16 – their 11	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
j 8 $(j =)$ 8 1ft ft 39 – (their 11 + their 5 + th	neir 15)
ft for positive integers only	
(b) (i) 5	
(ii) 51 1 ft ft 36 + their i	
(c) (i) 15	
(ii) 10 1	
1 In (d) and (e) accept fraction,	%, dec equivalents
(d) (i) $\frac{13}{90}$ oe [0.144] (3sf or better) throughout but is wincorrect cancelling/conv	
isw incorrect cancelling/conve	ersion
(ii) $\frac{15}{90}$ oe [0.167]	

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0580	41

	1		ı	T
	(e)	(i) $\frac{20}{8010}$ oe $[0.0025[0]]$	2	M1 for $\frac{5}{90} \times \frac{4}{89}$ oe
				After M0 , SC1 for $\frac{5}{90} \times \frac{5}{90}$ oe
		(ii) $\frac{598}{8010}$ oe $[0.0747]$	3	M2 for $\left(\frac{23}{90} \times \frac{13}{89}\right) + \left(\frac{13}{90} \times \frac{23}{89}\right)$ oe
				or M1 for one product soi [0.0373]
				After M0 , SC1 for $2\left(\frac{23}{90} \times \frac{13}{90}\right)$ oe
4	(a)	(i) 2.5 or $\frac{5}{2}$	2	M1 for one correct step collected i.e $6x = k$ or $ax = 15$ or for $4x + 2x = 8 + 7$
		(ii) 13	2	M1 for $x - 7 = 2 \times 3$ or better
	(b)	(i) $27x^3y^{12}$ final answer	2	B1 for 2 correct elements
		(ii) $4a^3b^{[1]}$ final answer	2	B1 for 2 correct elements
		(iii) $\frac{x+1}{x+8}$ www final answer	4	M2 for $(x - 8)(x + 1)$ seen or SC1 for $(x + a)(x + b)$ where $a + b = -7$ or $ab = -8$ and B1 for $(x + 8)(x - 8)$ seen
5	(a)	55.6 to 55.61 www	3	M2 for $\sqrt{46^2 + 24^2 + 20^2}$ oe $\left[\sqrt{3092}\right]$ or M1 for $46^2 + 24^2$ oe [soi by 2692 or art 51.9] or $46^2 + 20^2$ oe [soi by 2516 or art 50.2] or $24^2 + 20^2$ oe [soi by 976 or art 31.2]
	(b)	90.6 or 90.57 to 90.58	3	M2 for $\frac{20000}{(20 \times 24 \times 46)} \times 100$ oe or M1 for $20 \times 24 \times 46$ [22080]
	(c)	25.19 to 25.21, 30.23 to 30.246 or 30.2, 57.95 to 57.97 or 58[.0]	3	M2 for $20 \times 3\sqrt{2}$ or $24 \times 3\sqrt{2}$ or $46 \times 3\sqrt{2}$ M1 for $3\sqrt{2}$ oe seen [1.259 to 1.261]
	(d)	16.8 to 16.842	3	M2 for $\sqrt[3]{\frac{20000}{4/3\pi}}$ oe or answer figs 168 to
				or M1 for $\sqrt[3]{\frac{20000}{4/3\pi}}$ [4770 – 4780] seen

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0580	41

6	(a)	(i)	$\begin{pmatrix} -2 \\ -1 \end{pmatrix}$	1	
		•	(-1)		
		(ii)	7.28 [0] or	2	M1 for $\sqrt{2^2 + (-7^2)}$ oe
			$\pm\sqrt{53}$ as final answer		
		(iii)	[m =] 3.5 oe and [n =] -1.5 oe	6	B1 for $-2m + 2n = -10$ oe and B1 for $3m - 7n = 21$ oe and M1 for correct attempt to equate one set of coefficients and M1dep for elimination allow 1 arithmetic error overall ft their sim eqns for both m's or M1 for correct rearrangement (allow 1 slip) and M1dep for correct substitution ft their sim eqns for both m's and A1 for 3.5 or -1.5
	(b)	(i)	$-\mathbf{p} + \mathbf{q}$	1	Condone column vector used
		(ii)	$-\frac{3}{5} \mathbf{p} + \frac{3}{5} \mathbf{q}$ oe	1 FT	Correct or ft $\frac{3}{5}$ (their (b)(i)) dep on $ap + bq$, $[a \neq 0, b \neq 0]$ Condone column vector used
		(iii)	Parallel similar 9:25 oe	1 1 1	Accept enlargement e.g 1: 2.77 [7] or 0.36: 1
7	(a)	(i)	360 ÷ 5	1	Accept longer correct methods
		(ii)	$(180 - 72) \div 2$	M1	Accept $[(5-2) \times 180]$ or $360 / 5$ M1
			54 × 2	E 1	Then ÷ 5 180 – 72 E1
		(iii)	180 - 90 - 72	1	Accept other methods provided they are fully explained
	(b)	2 ×	$7 \times \sin(72/2)$ oe	M2	M1 for $7 \times \sin(72/2)$ oe Alt methods M2 for $[DC^2 =] 7^2 + 7^2 - 2.7.7 \cos 72$ or M1 for implicit version or M2 for $(7 \sin 72)/\sin 54$ or M1 for $DC/\sin 72 = 7/\sin 54$ oe
		8.22	28 to 8.229	E 1	Dep on M2 and with no errors seen

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0580	41

	(c)	(i) 23.3[0]	2	M1 for $\frac{1}{2} \times 7 \times 7 \times \sin 72$ oe
		(ii) 116.5 to 116.52 or 117	1 ft	ft their (c)(i) × 5
		(iii) 30.78 to 30.8	2	M1 for $72/360 \times \pi 7^2$
		(iv) 12.66 to 12.67 or 12.7	2	M1 for 7 + 7 cos 36 oe [7 + 5.66] e.g 8.23 cos54 + 8.23 sin72 oe [4.84 + 7.83]
	(d)	1.43 or 1.432 to 1.453 cao	5	B4 for area of rectangle = 168.3 to 169.2 www or area of triangular corners = 51.6 to 52.5 www or B3 for 13.3 to 13.32 seen or M2 for $[ZY =] 8.23 + 2(8.23\sin 18)$ oe or 2 (8.23 sin 54) or $2 \times 7 \sin 72$ oe or B1 for $[CY =] 2.54[3]$ or 5.08 to 5.09 seen or $[AX =] 6.65$ to 6.66 seen
8	(a)	2x + 7 final answer $x + 9$ final answer	2	B1 for each, accept in either order After 0 scored allow SC1 mark for both correct but unsimplified
	(b)	2(2x + 3)(x + 5) at any stage $2x^2 + 3x + 10x + 15$ or better	M1 B1	The \times 2 could be embedded within one of the brackets e.g. $(4x + 6)(x + 5)$ Expands brackets correctly
		$4x^2 + 26x + 30$	E 1	No errors seen and two previous stages shown
	(c)	(i) $4x^2 + 26x - 45 = 0$ soi	B 1	
		$\frac{-26\pm\sqrt{(26)^2-4(4)(-45)}}{2(4)}$	B1 ft B1 ft	ft their $4x^2 + 26x \pm k$ [$k \neq 0$] oe In square root B1 ft for $(26)^2 - 4(4)(-45)$ or better (1396)
				If in form $\frac{p+\sqrt{q}}{r}$ or; $\frac{p-\sqrt{q}}{r}$ B1 ft for -26 and 2(4) or better
		-7.92, 1.42 final answers	B1 B1	If B0 , SC1 for –7.9 and 1.4 or both answers – 7.920, 1.420 or for–7.92 , 1.42 seen
		(ii) 6.42 [0]	1 ft	ft their greatest positive root
				If their $x \le 2$ then ft $x + 5$ If their $x > 2$ then ft $2x + 3$
				11 then $\lambda \geq 2$ then it $2\lambda + 3$

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2012	0580	41

9	(a) 5.79×10^7 oe 5.21 39.5	1 1 1	Accept ans in range 57890000 to 57900000 5.207 39.50 or 39.51 Accept answers to greater than 3sf
	(b) (i) 498.6 to 499	2	M1 for $1.496 \times 10^8 \div 300\ 000$
	(ii) 328 or 328.3	2	M1 for figs 197 or figs 328[3] seen Or their 39.5 × their (b)(i)
	(c) $9.46[0]$ to 9.461×10^{12}	3	B2 for any correct equivalent or M1 for $300\ 000 \times 3600 \times 24 \times 365$ oe
	(d) 63200 or 63235 to 63242 oe	2	or for answer figs 946 to 9461 M1 for figs (their (c) ÷ 1496). Implied by first 3 figs correct