Cambridge IGCSE[™] | CANDIDATE
NAME | | | | | | |-------------------|--|--|---------------------|--|--| | CENTRE
NUMBER | | | CANDIDATE
NUMBER | | | **COMBINED SCIENCE** 0653/43 Paper 4 Theory (Extended) October/November 2023 1 hour 15 minutes You must answer on the question paper. No additional materials are needed. #### **INSTRUCTIONS** - Answer all questions. - Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs. - Write your name, centre number and candidate number in the boxes at the top of the page. - Write your answer to each question in the space provided. - Do **not** use an erasable pen or correction fluid. - Do not write on any bar codes. - You may use a calculator. - You should show all your working and use appropriate units. #### INFORMATION - The total mark for this paper is 80. - The number of marks for each question or part question is shown in brackets []. - The Periodic Table is printed in the question paper. 1 (a) Fig. 1.1 shows part of the breathing system in humans. Fig. 1.1 | (i) | State the names of the parts labelled A and B in Fig. 1.1. | | |------|--|----| | | A | | | | В | | | | | [2 | | (ii) | Describe how goblet cells protect the lining of the trachea. | | | | | | | | | | | | | ro | (b) The breathing rate of four students is measured before and during physical activity. Table 1.1 shows the results. Table 1.1 | student | | breathing rate /breaths per minute | | |---------|--------------------------|------------------------------------|------------| | Student | before physical activity | during
physical activity | difference | | 1 | 18 | 33 | 15 | | 2 | 14 | 32 | 18 | | 3 | 16 | 35 | 19 | | 4 | 17 | 38 | 21 | | (i) | Identify the student in Table 1.1 with the lowest breathing rate before physical activity. | |-------|---| | | [1] | | (ii) | Calculate the average difference in breathing rate. | | | Give your answer to the nearest whole number. | | | | | | | | | | | | average difference = breaths per minute [2] | | (iii) | Explain the effect of physical activity on breathing rate shown in Table 1.1. | | | Include ideas about carbon dioxide in your answer. | | | | | | | | | | | | [3] | | | [Total: 10] | **2** Fig. 2.1 shows the electrolysis of concentrated aqueous sodium chloride using platinum electrodes. Fig. 2.1 (a) Some information about ions in the solution is shown in Table 2.1. Table 2.1 | name of ion | formula of ion | source of ion | concentration of ion during the electrolysis | |-------------|-----------------|-----------------|--| | chloride | Ct ⁻ | sodium chloride | decreases | | hydrogen | | water | | | hydroxide | OH- | | stays the same | | sodium | | sodium chloride | | | (i) | Complete Table 2.1. | [3] | |------|---|-----| | (ii) | Describe what happens to the chloride ions at the positive electrode during electrolysis. | the | | | Use ideas about ions, electrons, atoms and molecules in your answer. | | | | | | | | | | | | | | | (b) | Plat | inum is a transition element. | |-----|------|--| | | (i) | State one property of platinum that makes it suitable to use as an electrode. | | | | [1] | | | (ii) | State two other properties of transition elements that are not properties of Group I elements. | | | | 1 | | | | 2 | | | | [2] | | | | [Total: 9] | **3** Fig. 3.1 shows a firefighter standing next to a fire engine. Fig. 3.1 | (| (a) | The firefighter | sprays | water | onto | the | fire. | |---|------------|-----------------|--------|-------|------|-----|-------| | ١ | \ <i> </i> | | - | | | | | The temperature of the fire is 600 °C. Calculate the mass of water in the tank. The density of water is $1000 \, kg/m^3$. | (i) | The firefighter is heated by the fire. | | |-------|--|-----| | | State the main method of energy transfer from the fire to the firefighter. | | | | | [1] | | (ii) | The temperature of the water is 15°C. | | | | State what happens to the water when it is heated from 15 °C to 600 °C. | | | | | [1] | | (iii) | The fire engine has a tank containing a volume of 1800 dm ³ of water. | | mass =kg [3] | (b) | The | fire engine has a weight of 140 000 N. | |-----|------|---| | | (i) | Calculate the mass of the fire engine. | | | | The gravitational force on unit mass g is 10 N/kg. | | | | | | | | | | | | | | | | mass =kg [2] | | | (ii) | The fire engine has a total area of 0.56 m ² in contact with the ground. | | | (11) | | | | | Calculate the pressure exerted by the fire engine on the ground. | | | | Give the unit of your answer. | [2] timi. | | | | pressure = unit [3] | | | | [Total: 10] | | | | | 4 (a) Fig. 4.1 shows part of the human alimentary canal and associated organs. Fig. 4.1 | (i) | Draw a label line and the letter G on Fig. 4.1 to identify the gall bladder. | [1] | |-------|--|-----| | (ii) | Starch is digested by an enzyme in the alimentary canal. | | | | State the name of the enzyme and of the product of this digestion. | | | | enzyme | | | | product | [2] | | (iii) | Describe how soluble food molecules are absorbed into the blood from the sr intestine. | | | | | | [Total: 9] **(b)** Fig. 4.2 shows the effect of temperature on the activity of an enzyme that is **not** found in humans. Fig. 4.2 (i) Identify the temperature at which the enzyme is the most active. | | temperature =°C [1] | |------|---| | (ii) | Explain the effect of a temperature of 20 °C on the activity of the enzyme. | | | | | | | | | | | | [3] | 5 Table 5.1 gives information on the percentage composition of the atmosphere of the planet Mars. Table 5.1 | gas | percentage composition of the atmosphere of Mars | |----------------|--| | carbon dioxide | 95.0 | | nitrogen | 1.9 | | argon | 1.9 | | (a) | (i) | The atmosphere of Mars contains other gases not shown in Table 5.1. | |-----|-----|---| | | | Use Table 5.1 to calculate the percentage of other gases in the atmosphere of Mars. | **(b)** The electronic structure of argon is shown in Fig. 5.1. Fig. 5.1 Argon is a noble gas. (c) The structure of carbon dioxide is shown in Fig. 5.2. Fig. 5.2 State the number of electrons that are shared between the carbon atom and one oxygen atom in a molecule of carbon dioxide. Give a reason for your answer. | number of electrons | | |---------------------|-----| | reason | | | | [2] | (d) Complete Fig. 5.3 to show the dot-and-cross diagram of a molecule of nitrogen. Show all of the outer shell electrons. Fig. 5.3 [2] [Total: 9] **6** A spring has an original length of 10.0 cm. An object is suspended from the spring, and the spring extends to a length of 12.0 cm, as shown in Fig. 6.1. Fig. 6.1 (a) (i) Determine the extension of the spring. | extension = | | cm | [1 |] | | |-------------|--|----|----|---|--| |-------------|--|----|----|---|--| (ii) The weight of the object is 1.5 N. Calculate the spring constant *k* of the spring. $k = \dots N/cm$ [2] (iii) State the name of the energy stored in the extended spring.[1] **(b)** The object is pulled down and held at a vertical distance of 3.0 cm from its rest position, as shown in Fig. 6.2. Fig. 6.2 The object is released, and the object oscillates up and down. The period of an oscillation is the time taken for one complete oscillation. Fig. 6.3 shows a distance—time graph for the vertical motion of the object after release. Fig. 6.3 - (i) On Fig. 6.3, use a double-headed arrow (\uparrow or \leftrightarrow) to show: - the period of the oscillation and label this T - the amplitude of the oscillation and label this A. [2] | (ii) | The mass of the object is 0.15 kg. | |-------|--| | | During oscillation, the object has a maximum speed of 0.012 m/s. | | | Calculate the kinetic energy of the object at its maximum speed. | kinetic energy = | | (iii) | kinetic energy = | | (iii) | A student suggests that the energy stored in the spring in Fig. 6.2 before the object is | | (iii) | A student suggests that the energy stored in the spring in Fig. 6.2 before the object is released is the same value as the kinetic energy calculated in (b)(ii) . | | (iii) | A student suggests that the energy stored in the spring in Fig. 6.2 before the object is released is the same value as the kinetic energy calculated in (b)(ii) . State whether you think the student is correct or incorrect. | | (iii) | A student suggests that the energy stored in the spring in Fig. 6.2 before the object is released is the same value as the kinetic energy calculated in (b)(ii) . State whether you think the student is correct or incorrect. Give a reason for your answer. | | (iii) | A student suggests that the energy stored in the spring in Fig. 6.2 before the object is released is the same value as the kinetic energy calculated in (b)(ii). State whether you think the student is correct or incorrect. Give a reason for your answer. student is | | (iii) | A student suggests that the energy stored in the spring in Fig. 6.2 before the object is released is the same value as the kinetic energy calculated in (b)(ii). State whether you think the student is correct or incorrect. Give a reason for your answer. student is | **7 (a)** Fig. 7.1 shows the drawing of a cross-section through a root. Fig. 7.1 | (i) | State two functions of the part labelled P in Fig. 7.1. | | |------|---|-----| | | 1 | | | | 2 | | | /::\ | Describe and way the rest bein cell is adopted for absorbtion | [2] | | (ii) | Describe one way the root hair cell is adapted for absorption. | | | | | [1] | [Total: 8] **(b)** Scientists measure the concentration of dissolved oxygen in pond **A** and in pond **B** for 24 hours. Fig. 7.2 is a graph of the results. Fig. 7.2 | | pond A | arowina in | lants that are | aquatic r | about | e the sentences | Complete | (i) | |--|--------|------------|----------------|-----------|-------|-----------------|----------|-----| |--|--------|------------|----------------|-----------|-------|-----------------|----------|-----| | | During daylight hours, chlorophyll in aquatic plants in the pond transfers light into | |------|--| | | energy. | | | This is part of the process of in the aquatic plants. [2] | | (ii) | Pond ${\bf B}$ is polluted with nitrate fertiliser, which increases the availability of nitrates in pond ${\bf B}$. | | | Explain the difference in concentration of dissolved oxygen between pond A and pond B . | | | | | | | | | | | | [3] | 8 Table 8.1 shows some information about some alkanes and alkenes. Table 8.1 | number of carbon atoms in | alka | ane | alkene | | | | | | |---------------------------|---------|--------------------------------|---------|--------------------------------|--|--|--|--| | one molecule | name | formula | name | formula | | | | | | 2 | ethane | C ₂ H ₆ | ethene | | | | | | | 3 | propane | C ₃ H ₈ | propene | C ₃ H ₆ | | | | | | 4 | | C ₄ H ₁₀ | butene | C ₄ H ₈ | | | | | | 8 | octane | | octene | C ₈ H ₁₆ | | | | | - (a) The general formula for the alkenes is C_nH_{2n} . - (i) Deduce the general formula for the alkanes.[1 (ii) Complete Table 8.1. [3] **(b)** The structure of propane is shown in Fig. 8.1. Fig. 8.1 (i) Describe how Fig. 8.1 shows that propane is a saturated hydrocarbon. (ii) Draw a diagram, similar to Fig. 8.1, to show the structure of **propene**. [2] [Total: 8] 9 (a) Fig. 9.1 shows an ultraviolet torch used to kill bacteria and viruses on surfaces. Fig. 9.1 When switched on, the torch emits both ultraviolet radiation and visible light. (i) Fig. 9.2 shows an incomplete electromagnetic spectrum. On Fig. 9.2, write ultraviolet and visible light in their correct places. Fig. 9.2 [2] (ii) State **one** danger of ultraviolet radiation. | · | F 4 | - | |---|-----|----| | | 11 | -1 | | | 11 | п | (iii) The torch uses a 3.7 V battery. The power rating of the torch is 3.0 W. Calculate the current in the torch. current = A [2] (b) A student has a box of 10Ω , 15Ω and 22Ω resistors. There are at least three resistors of each value in the box. The student takes three resistors and connects them together as shown in Fig. 9.3. The total resistance between points $\bf A$ and $\bf B$ is $28\,\Omega$. Find values for R1, R2 and R3 that give a total resistance of $28\,\Omega$. Show calculations to support your values. R1 = $$\Omega$$ R2 = Ω R3 = Ω [3] [Total: 8] ## **BLANK PAGE** 23 ### **BLANK PAGE** Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series. Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge. The Periodic Table of Elements | | III/ | 2
H | helium
4 | 10 | Ne | neon
20 | 18 | Ā | argon
40 | 36 | 궃 | krypton
84 | 54 | Xe | xenon
131 | 98 | R | radon | | | | |-------|-------------|--------|---------------|---------------|--------------|------------------------------|----|----|------------------|----|----|-----------------|----|----------|------------------|-------|-------------|-----------------|--------|-----------|--------------------| | | IIA | | | 6 | ш | fluorine
19 | 17 | Cl | chlorine
35.5 | 35 | Ā | bromine
80 | 53 | П | iodine
127 | 82 | ¥ | astatine
- | | | | | | IN | | | 8 | 0 | oxygen
16 | 16 | ഗ | sulfur
32 | 8 | Se | selenium
79 | 52 | <u>e</u> | tellurium
128 | 84 | Ъ | moloulum
- | 116 | | livermorium
- | | | > | | | 7 | Z | nitrogen
14 | 15 | ₾ | phosphorus
31 | 33 | As | arsenic
75 | 51 | Sb | antimony
122 | 83 | B | bismuth
209 | | | | | | <u>></u> | | | 9 | ပ | carbon
12 | 14 | S | silicon
28 | 32 | Ge | germanium
73 | 50 | Sn | tin
119 | 82 | Pb | lead
207 | 114 | Εl | flerovium
– | | | Ш | | | 5 | В | boron
11 | 13 | Αl | aluminium
27 | 31 | Ga | gallium
70 | 49 | In | indium
115 | 81 | 11 | thallium
204 | | | | | | | | | | | | | | | 30 | Zn | zinc
65 | 48 | S | cadmium
112 | 80 | Нg | mercury
201 | 112 | S | copernicium
- | | | | | | | | | | | | 29 | Cn | copper
64 | 47 | Ag | silver
108 | 79 | Au | gold
197 | 111 | Rg | roentgenium
- | | Group | | | | | | | | | | 28 | Z | nickel
59 | 46 | Pd | palladium
106 | 78 | 五 | platinum
195 | 110 | Ds | darmstadtium
- | | Gre | | | | | | | | | | 27 | ဝိ | cobalt
59 | 45 | R | rhodium
103 | 77 | 'n | iridium
192 | 109 | Ħ | meitnerium
- | | | | - エ | hydrogen
1 | | | | | | | 26 | Fe | iron
56 | 44 | Ru | ruthenium
101 | 92 | Os | osmium
190 | 108 | Hs | hassium
- | | | | | | | | | | | | 25 | Mn | manganese
55 | 43 | ည | technetium
- | 75 | Re | rhenium
186 | 107 | Bh | bohrium
– | | | | | | _ | lod | ass | | | | 24 | ပ် | chromium
52 | 42 | Мо | molybdenum
96 | 74 | > | tungsten
184 | 106 | Sg | seaborgium
- | | | | | Key | atomic number | atomic symbo | name
relative atomic mass | | | | 23 | > | vanadium
51 | 41 | qN | niobium
93 | 73 | <u>n</u> | tantalum
181 | 105 | 9 | dubnium
- | | | | | | | atc | <u> </u> | | | | 22 | j | titanium
48 | 40 | Zr | zirconium
91 | 72 | Ξ | hafnium
178 | 104 | Ł | rutherfordium
- | | | | | | | | | | | | 21 | Sc | scandium
45 | 39 | > | yttrium
89 | 57–71 | lanthanoids | | 89–103 | actinoids | | | | = | | | 4 | Be | beryllium
9 | 12 | Mg | magnesium
24 | 20 | Ca | calcium
40 | 38 | ഗ് | strontium
88 | 56 | Ba | barium
137 | 88 | Ra | radium
– | | | _ | | | က | = | lithium
7 | 7 | Na | sodium
23 | 19 | ¥ | potassium
39 | 37 | В | rubidium
85 | 55 | Cs | caesium
133 | 87 | Ŧ | francium
- | | 71
Lu | lutetium
175 | 103 | ۲ | lawrencium
- | |-----------------|---------------------|-----|-----------|---------------------| | 70
Yb | ytterbium
173 | 102 | 9
N | nobelium
- | | e9
Tm | thulium
169 | 101 | Md | mendelevium
– | | 68
Fr | erbium
167 | 100 | Fn | fermium
– | | 67
Ho | holmium
165 | 66 | Es | einsteinium
- | | 66
Dy | dysprosium
163 | 86 | ర | californium
- | | 65
Tb | terbium
159 | 6 | Æ | berkelium
- | | Gd ² | gadolinium
157 | 96 | Cm | curium
– | | e3
Eu | europium
152 | 92 | Am | americium
- | | 62
Sm | samarium
150 | 94 | Pu | plutonium
– | | e1
Pm | promethium
— | 93 | dN | neptunium
- | | 9
9
8 | neodymium
144 | 92 | \supset | uranium
238 | | 59
Pr | praseodymium
141 | 91 | Ра | protactinium
231 | | Ce
Ce | cerium
140 | 06 | H | thorium
232 | | 57
La | lanthanum
139 | 89 | Ac | actinium | lanthanoids actinoids The volume of one mole of any gas is $24\,\mathrm{dm^3}$ at room temperature and pressure (r.t.p.).