

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

COMBINED SCIENCE 0653/23

Paper 2 Core Theory

October/November 2016

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

www.dynamicpapers.com
Syllabus Pape
2016 0653 23

Paper

23

1	(a)	(i)	newton ;			[1]	
•	()	(ii)		noves through a dist	ance : owtte	[1]	
		(",	because a force i	noves unough a dist	ande, owite	ניז	
	(b)	(i)		(algatia) :			
			potential/stored (kinetic;	elastic),		[3]	
		(ii)			ow as e.g. vibration/is lost as	[4]	
			sound/thermal e	nergy / AVR ;		[1]	
	(c)	(i)	180 km/h = 180 :	× 1000/3600 = 50 m	/s;	[1]	
		(ii)		speed ; (or equivalen	t) OR 100/50		
			= 2(s)			[2]	
2	(a)				ı		
			particle	number			
			proton	12			
			neutron	12			
		;;					
			r 3 correct boxes (orrect boxes (2)	1)		[2]	
	(b)		gen LHS ; gnesium LHS <i>and</i>	magnesium oxide R	HS;	[2]	
	(c)	A and hydrogen/H ₂					
	(d)	(i)	sodium chloride;				
			sodium is a meta	l and chlorine is a no	on-metal ;	[2]	
		(ii)	water ; hydrogen <i>and</i> ox	ygen are non-metals	•		
			or hydrogen ;				
			hydrogen is a nor	n-metal ;		[2]	

Mark Scheme Cambridge IGCSE - October/November 2016

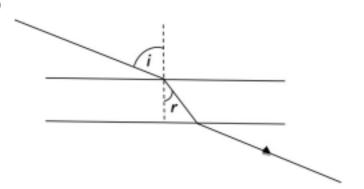
Page 2

www.dynamicpapers.com
Syllabus Pape
2016 0653 23

Paper

23

						O.O.O.					
3	(a)	(i)	E vena cava	a/ B pul	monary vein ;					[1]]
		(ii)	valve ; prevents ba	ckflow	of blood ;					[2]]
		(iii)	oxygen cont carbon dioxi		reases ; tent decreases	3;				[2]]
	(b)	(i)	glucose + ox	xygen -	→ carbon dioxi	de + w	ater ;			[1]]
		(ii)	any two from protein syntl cell division growth; passage of	hesis ; ;	mpulses :						
					onstant body t	empera	ature ;			[2]]
	(c)	acti	ivity is more e	energet	g. walking and ic/active/uses ess oxygen tha	more	oxygen than sit ning ;	ting bu	t less	[1]]
4	(a)	infr	a-red ;								
			gamma radiation		ultra-violet		infra-red		radio waves		
		in c	correct box;							[2]]
	(b)		iation ; ovection ;							[2]]
	(c)	any reasonable description of good insulation around tank;								[1]]
	(d)	any	reasonable (descrip	tion of thermal	expan	sion ;			[1]]
	(e)	any	reasonable _l	problen	n caused by wa	ater fre	ezing/ice form	ing;		[1]]


Mark Scheme Cambridge IGCSE - October/November 2016

Page 3

www.dynamicpapers.com

Page 4	Mark Scheme		/llabus	Paper
	Cambridge IGCSE – October/November 2016		0653	23

(f)

ray from air to glass bent towards normal; both angles marked correctly; exit ray into vacuum roughly parallel to incident ray;

[3]

5 (a)

ion	reagent	result
copper(II)	NaOH/NH₃(aq) ;	(light) blue ppt/solid ALLOW dark_blue solution if NH ₃ used;
chloride	AgNO ₃ ;	white ppt/solid;

[4]

(b) (i) cathode; anode; electrolyte;

3 correct (2)

1 or 2 correct (1)

[2]

(ii) copper;
 brown/pink;

[2]

(iii) (chlorine) (pale) green;

(litmus) white/bleached;

[2]

www.dvnamicpapers.com

[3]

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0653	23

6 (a) (i) F stigma/carpel;

G sepal ; [2]

(ii) any anther correctly labelled; contains the male gamete/pollen [2]

(iii) any one from:

large/brightly-coloured petals;

scented;

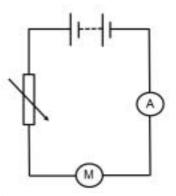
presence of nectar; [1]

(b) (i) any two from:

increased rate of transpiration (at 27 °C); (due to) increased rate of evaporation/more water loss from plant; molecules have more kinetic energy; [2]

(ii) any value less than 1.1 cm because the rate of evaporation/transpiration is lower in humid conditions; [1]

(c) (i) root 1 and


it has root hairs cells (for absorption of water); [1]

(ii) line drawn across the root through the cortex to the stele; line finishes in the xylem; [2]

7 (a) (i) 50 (cm); [1]

(ii) correct arrow; [1]

(b)

variable resistor symbol; ammeter symbol;

all connected in series to form a complete circuit;

(c) (i) resistance; [1]

(ii) (3/2 =) 1.5; ohm(s)/ Ω ; [2]

www.dynamicpapers.com

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2016	0653	23

8 (a) process B filter(ing)/filtration;

process C evaporation/crystallisation;

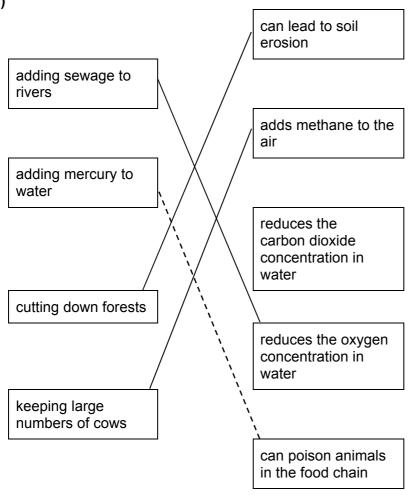
[2]

(b) increase concentration (of acid); increase temperature;

[2]

(c) (i) sodium sulfate/Na₂SO₄; carbon dioxide/CO₂;

[2]


(ii) (pH number) increases/goes to 7;

[1]

(iii) three/3;

[1]

9 (a)

[3]

(b) (i) burning fossil fuels / deforestation;

[1]

(ii) causes the temperature of the atmosphere to rise/global warming/carbon dioxide is a greenhouse gas; consequence, e.g. flooding/melting ice caps/changes in weather patterns; AVP

[2]