

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

643070215

COMBINED SCIENCE

0653/41

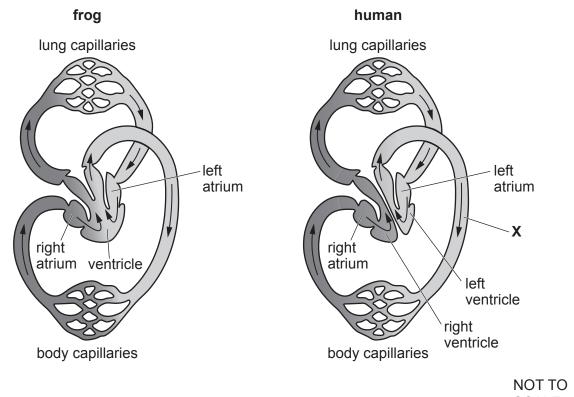
Paper 4 Theory (Extended)

May/June 2023

1 hour 15 minutes

You must answer on the question paper.

No additional materials are needed.


INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Fig. 1.1 shows the circulatory system of frogs and the circulatory system of humans.

SCALE

Fig. 1.1

(i)	Identify the type of blood vessel labelled X in Fig. 1.1.	
		[1]
(ii)	Describe one difference between the frog heart and the human heart shown in Fig. 1	.1.
		[1]
(iii)	Humans have a double circulatory system.	
	Explain the advantages of a double circulatory system.	
		[2]

(b) A study investigates the risk factors for coronary heart disease (CHD).

A sample of people with CHD record the risk factors they have.

Some people in the study record more than one risk factor.

Table 1.1 shows the results.

Table 1.1

risk factor	percentage of people recording risk factor
current smoker	24
diet with few fruit and vegetables	64
high alcohol intake	42
lack of physical activity	70
overweight	54

	(1)	identity the risk factor recorded by the highest percentage of people.	- 4-
	(ii)	There are 350 people in the study. Calculate the number of people that record being overweight.	[1]
		number of people =	[2]
	(iii)	The risk factors in Table 1.1 are linked to lifestyle and can be changed. State one risk factor for CHD that is not linked to lifestyle.	
			[1]
c)	Eati	ing more fruit and vegetables is one way to help reduce the risk of CHD.	
		plain why eating more fruit and vegetables can also reduce the risk of scurvy astipation.	and
	scu	rvy	
	con	stipation	
			[2]

[Total: 10]

2 An electric current is passed through concentrated aqueous sodium chloride using inert electrodes, as shown in Fig. 2.1.

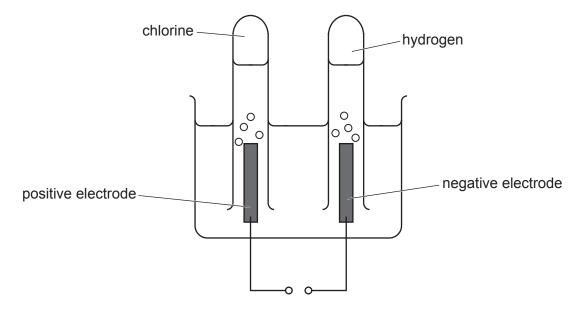


Fig. 2.1

- (a) Table 2.1 shows some of the names, formulae and sources of ions in concentrated aqueous sodium chloride.
 - (i) Complete Table 2.1.

Table 2.1

name of ion	formula of ion	source of ion
chloride	C <i>l</i> -	sodium chloride
hydrogen		water
	OH-	
sodium		

г		٦
	٠,	-1

(ii) State how the concentration of chloride ions changes during the electrolysis.

Explain your answer.		
	 	[1]

(b)	Stat	te the chemical test for hydrogen and the observation for a positive result.	
	test		
	obs	ervation	
			[1]
(c)	A so	olution of blue litmus indicator is added to the aqueous sodium chloride.	
	Whe	en the current is first turned on, the litmus indicator at the positive electrode turns red.	
	(i)	Explain why the litmus indicator turns red.	
			[1]
	(ii)	As the electrolysis progresses, the red litmus indicator changes colour.	
		State and explain this colour change.	
		colour change	
		explanation	
			[2]
		[Total:	: 8]

3 Fig. 3.1 shows two people keeping warm by a campfire and one is playing a guitar.

Fig. 3.1

(a)	Stat	te the process by which the people are warmed by energy coming directly from the fire.
		[1]
(b)	Hot	air carries smoke from the fire high into the cold air.
	Exp	lain why the hot gases rise. Use ideas about molecules in your answer.
		[3]
(c)	The	person in Fig. 3.1 plays a guitar string which emits a musical note of frequency 256 Hz.
	(i)	State how the musical note is produced by the guitar string when played.
		[1]
	(ii)	Calculate the wavelength of the musical note.
		Speed of sound in air = 330 m/s.

wavelength = m [2]

www.dynamicpapers.com

7

The sound is transmitted through the air as a succession of compressions an rarefactions.	ıd
Describe what is meant by a succession of compressions and rarefactions.	
	•••
	••
[<i>i</i>	2]
[Total: 9	9]

4 (a) Fig. 4.1 shows part of a food web.

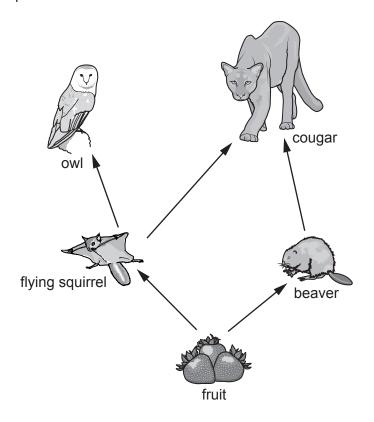


Fig. 4.1

(i) Table 4.1 shows some terms that can be used to describe the organisms in Fig. 4.1.

Complete Table 4.1 by placing ticks (\checkmark) in the boxes to show the term used to describe each organism.

One column has been done for you.

Table 4.1

organism	producer	herbivore	secondary consumer
flying squirrel			
owl			
cougar			
beaver			
fruit	1		

[2]

	(ii)	Energy flows through the food web shown in Fig. 4.1. More energy is available at the trophic level occupied by the beaver than the cougar.
		Explain why.
		[3]
(b)	Mos	st edible fruits are produced by insect-pollinated plants.
	Stat	re two ways pollen is adapted for insect pollination.
	1	
	2	
		[2]
		[Total: 7]

5 Table 5.1 shows some information about alkanes and alkenes.

Table 5.1

number of carbon atoms	all	kanes	alkenes				
per molecule	name	formula	name	formula			
1	methane	CH ₄	does n	ot exist			
2	ethane		ethene	C ₂ H ₄			
3	propane	C ₃ H ₈	propene	C ₃ H ₆			
4	butane	C ₄ H ₁₀	butene	C ₄ H ₈			
8	octane	C ₈ H ₁₈	octene				

(a)	The general formu	la of alkanes	is C _n H _(2n+2) .		
	Deduce the genera		,		
					 [1]
(b)	Complete the table	e by filling in tl	he formulae for e	thane and for octene.	[2]

(c) Fig. 5.1 shows the structures of ethene and propene.

etnene	propene
H H	H CH ₃
	3

Fig. 5.1

	(i)	Ethene and propene are unsaturated hydrocarbons.	
		State what is meant by unsaturated and hydrocarbons.	
		unsaturated	
		hydrocarbons	
			[2]
	(ii)	Explain why meth ene does not exist.	
			[2]
(d)	Ref	inery gas, obtained from petroleum, contains both propane and butane.	
	(i)	State one use of refinery gas.	
			[1]
	(ii)	Explain why propane and butane are in the same fraction.	
			[1]
			[Total: 9]

6 Fig. 6.1 shows a moving conveyor belt carrying a box from the ground up to an aircraft.

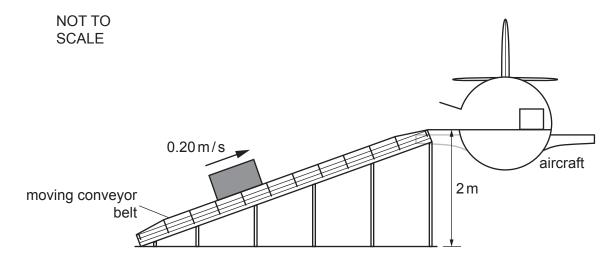


Fig. 6.1

(a) (i) Complete the sentence.

The gravitational force acting on the box is called the of the box. [1]

(ii) The conveyor belt carries the box upwards by the force of friction exerted by the belt on the box.

On Fig. 6.1, draw an arrow to show the direction of the force due to friction of the belt on the box. The arrow must be in contact with the box. [1]

(b) The conveyor belt is $5.0 \,\mathrm{m}$ long and moves the box at $0.2 \,\mathrm{m/s}$.

Calculate the time taken by the box to travel from the ground to the top of the conveyor belt.

time = s [2]

(c)	The	box has a mass of 45 kg. The conveyor belt carries it to the aircraft, 2 m above the ground.
	Gra	vitational force on unit mass is 10 N/kg.
	(i)	Calculate the gain in gravitational potential energy of the box when it reaches the aircraft.
		energy gained = J [2]
	(ii)	When the box reaches the aircraft, it is placed on the floor inside.
		The base of the box measures $60\text{cm} \times 50\text{cm}$.
		Calculate the pressure exerted by the box on the floor of the aircraft.
		Give the units of your answer.
		pressure = units [4]
		[Total: 10]

7 (a) Two young potted plants are left to grow in a room with **no** light.

Plant A is placed standing upright.

Plant **B** is placed on its side.

Fig. 7.1 shows the two plants after 10 days.

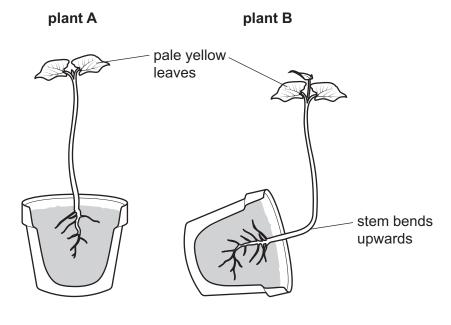


Fig. 7.1

(i) Lack of light causes the leaves to turn yellow.

Complete the sentences.

	The yellow colour of the leaves in Fig. 7.1 is due to a decrease in the green pigm	ent
	called	
	Less light energy is converted to energy in the chloroplasts.	
	This results in reduced synthesis of	[2]
(ii)	Explain why the stem of plant B bends upwards.	[3]

(b) Fig. 7.2 shows part of a plant root.

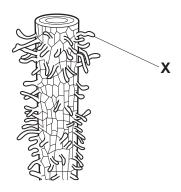


Fig. 7.2

	Describe how the cell labelled X is adapted for its function.
	[2]
(c)	During eutrophication aquatic plants die. This decreases the concentration of dissolved oxygen in lakes.
	One reason for this is a reduction in photosynthesis.
	Explain one other way the death of aquatic plants reduces the concentration of dissolved oxygen in lakes.
	[2]
	[Total: 10]

8 An iron nail is placed in a test-tube, as shown in Fig. 8.1.

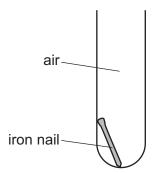


Fig. 8.1

(a) After one week, a layer of rust has formed on the nail.

The equation for the reaction that forms rust is shown.

4Fe +Fe₂O₃
$$\rightarrow$$
Fe₂O₃

(i) Balance the equation. [1]

(ii) The symbol for an oxide ion is O²⁻.

Deduce the symbol for the iron ion in Fe₂O₃.

.....[1]

(b) Rusting can be prevented by using a barrier method.

(i) Describe how a barrier method prevents rusting.

.....[2]

(ii) State an example of a barrier method used to prevent rusting.

......[1]

(c) The arrangement of bonds in a molecule of oxygen is shown in Fig. 8.2.

Fig. 8.2

	State the number of electrons which are shared between the oxygen atoms in this molec	ule.
	Give a reason for your answer.	
	number of electrons	
	reason	
		[2]
(d)	At room temperature, iron oxide is a solid and oxygen is a gas.	
	Explain why iron oxide and oxygen have different physical states.	
	Use ideas about bonding and forces in your answer.	
		. [2]
	[Tota	al: 9]

9 Fig. 9.1 shows a student using a laptop computer. There is a lamp beside the student.

Fig. 9.1

(a) Fig. 9.2 is a diagram of the student, lamp and computer from the same viewpoint as Fig. 9.1. The ray in Fig. 9.2 shows how the student sees the light from the lamp reflected in the laptop computer screen.

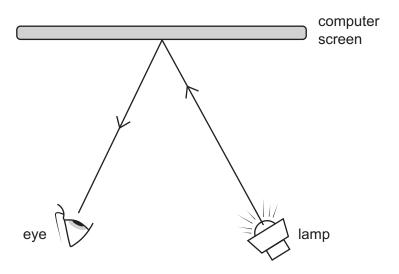


Fig. 9.2

State the law of reflection of light.

Your answer should include the word normal .	
	[1]

- **(b)** The lamp is connected to the laptop computer by a cable to supply power at 5.0 V. The current in the lamp is 0.020A.
 - (i) Calculate the resistance of the lamp.

resistance = Ω [2]

(ii) Calculate the power rating of the lamp.

power = W [2]

(iii) The lamp contains two identical components called LEDs (light-emitting diodes) connected in parallel.

A switch and resistor are connected in series with the LEDs.

The symbol for an LED is shown in Fig. 9.3.

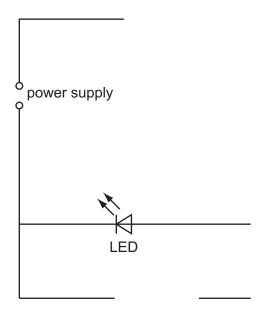


Fig. 9.3

On Fig. 9.3, complete the circuit diagram for the lamp circuit using the correct circuit symbols.

[3]

[Total: 8]

BLANK PAGE

BLANK PAGE

BLANK PAGE

23

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	III/	2 He	helium 4	10	Ne	neon 20	18	Ā	argon 40	36	궃	krypton 84	55	Xe	xenon 131	98	Ru	radon			
	II/			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	Н	iodine 127	82	At	astatine -			
	>			80	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ро	polonium -	116	^	livermorium -
	>			7	z	nitrogen 14	15	۵	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	Ξ	bismuth 209			
	≥			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Ъ	lead 207	114	Ρl	flerovium -
	≡			2	В	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	11	thallium 204			
										30	Zu	zinc 65	48	g	cadmium 112	80	Hg	mercury 201	112	S	copernicium
										59	Cn	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
d _n										28	Ë	nickel 59	46	Pd	palladium 106	78	Ŧ	platinum 195	110	Ds	darmstadtium -
Group										27	ဝိ	cobalt 59	45	몺	rhodium 103	77	'n	iridium 192	109	¥	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	£	hassium -
				J						25	Mn	manganese 55	43	ည	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
					Г	ű				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	QN	niobium 93	73	<u>Б</u>	tantalum 181	105	Op	dubnium –
				at	ator	relati				22	j	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿒	rutherfordium -
							1			21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium -
	_			8	:=	lithium 7	1	Na	sodium 23	19	¥	potassium 39	37	& S	rubidium 85	55	S	caesium 133	87	ъ́	francium —

7.1	P	lutetium	175	103	۲	lawrencium	ı
					%	-	I
69	H	thulium	169	101	Md	mendelevium	ı
89	ш	erbinm	167	100	Fm	ferminm	ı
29	운	holmium	165	66	Es	einsteinium	I
99	ò	dysprosium	163	86	ర	californium	I
65	Д	terbium	159	97	BK	berkelium	ı
64	рg	gadolinium	157	96	Cm	curium	ı
63	П	europium	152	92	Am	americium	ı
62	Sm	samarium	150	94	Pu	plutonium	ı
61	Pm	promethium	ı	93	d d	neptunium	ı
09	ρN	neodymium	144	92	\supset	uranium	238
29	ቯ	praseodymium	141	91	Ра	protactinium	231
28	Ce	cerium	140	06	Η	thorium	232
22	Гa	lanthanum	139	88	Ac	actinium	ı

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).