

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

COMBINED SCIENCE

0653/52

Paper 5 Practical Test

May/June 2016

1 hour 30 minutes

Candidates answer on the Question Paper.

Additional Materials: As listed in the Confidential Instructions.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

Electronic calculators may be used.

You may lose marks if you do not show your working or if you do not use appropriate units.

Notes for Use in Qualitative Analysis for this paper are printed on page 8.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
Total		

This document consists of 8 printed pages.

- 1 You are going to investigate the food content of peas and sweetcorn.
 - (a) (i) Complete the second **row** in Table 1.1 to show the food group that can be identified by each of the tests. [2]

(ii) Procedure

- Label three test-tubes A, B and C.
- Remove the outer skin (testa) from each of the 15 peas provided.
- Gently crush five peas in a beaker using the glass stirring rod and transfer to one of the test-tubes.
- Repeat this two more times so that each test-tube contains five crushed peas.
- Add Benedict's solution to a depth of approximately 2cm to test-tube A. Using a clean stirring rod, mix well.
- Place in a hot water-bath for a few minutes. Continue with the rest of part (a) while you are waiting.
- Add biuret solution to a depth of approximately 2cm to test-tube **B**. Using a clean stirring rod, mix well.
- Add a few drops of iodine solution to test-tube **C**. Using a clean stirring rod, mix well.
- Record your observations in Table 1.1. [2]
- (iii) Repeat the procedure in (ii) using sweetcorn kernels. You will need to remove the outer skins of the sweetcorn. [2]
- (iv) Explain why you need to crush the peas and sweetcorn before carrying out the food tests.

[1]

Table 1.1

	test-tube A	test-tube B	test-tube C
	Benedict's test	biuret test	iodine test
food group tested for			
colour obtained with peas			
colour obtained with sweetcorn			

(b)	Use your observations in Table 1.1 to identify the food groups present in peas and sweetcor	'n.
	peas	
	sweetcorn	
		[3]

_	0					
2	Solids X. Y	/ and Z ha	ave the same	e cation.	but different	anions

You are provided with:

distilled water ammonia solution barium chloride solution silver nitrate solution limewater

(a) Identifying the cation

Make a solution of a **small** amount of solid **Y** in distilled water in a test-tube.

Add ammonia solution to a quarter of a test-tube of solution **Y** until no further change. Record all observations.

Identify the cation in solid Y .	
observations	
cation in solid Y is	
	[3

(b) Identifying the anion in X

(i) Place solid **X** in the hard glass test-tube to a depth of 2 cm. Using a delivery tube, connect the hard glass test-tube to a test-tube one quarter full of limewater. Hold the test-tubes in the clamps provided.

Draw a labelled diagram of this apparatus connected together. There is no need to draw the stands, clamps or bosses.

(11)	gases produced to bubble through the limewater.	any
	Stop heating when there is no further change in the limewater and immediately rem the delivery tube from the limewater.	ove
	Record your observations for both test-tubes and identify the anion in ${\bf X}$.	
	observations	
	anion in X is	
		[2]

(c) Identifying the anions in Y and Z

Make a solution of solid **Y** in distilled water. Split the solution into two portions.

To one portion add barium chloride solution. To the other portion add silver nitrate solution.

Record in Table 2.1 your observations and identify the anion in Y.

Repeat the procedure for solid **Z**.

Table 2.1

	solution of Y	solution of Z
barium chloride solution		
silver nitrate solution		
anion is		

[3]

3 You are going to investigate two different methods of insulating a beaker of water.

You will use the apparatus shown in Fig. 3.1.

Beaker **P** has a layer of insulation wrapped around it, but has no lid.

Beaker **Q** has a lid, but no insulation.

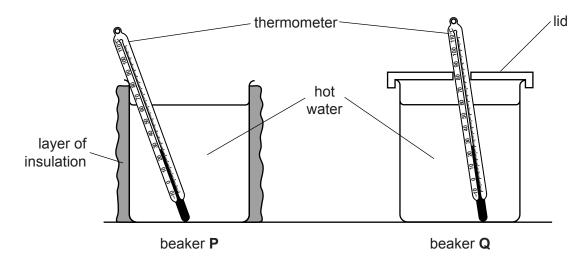


Fig. 3.1

(a) (i) Procedure

- Pour 200 cm³ of hot water into beaker P.
- Place the thermometer into the water. When the reading stops rising, measure the temperature T of the hot water and start the stopwatch.

Record, in Table 3.1, this temperature at time t = 0. [1]

(ii) Measure the temperature of the hot water every 30s for 180s. Record your results in Table 3.1. [2]

Table 3.1

time t / s	temperature T / °C
0	
30	
60	
90	
120	
150	
180	

beaker P

(b)	Calculate the fall in	temperature T_{-}	of the hot water in	beaker P over the 1	80s.
١	~,	Odiodiate the fall li	i terriperature 7	or the hot water in	Dealer I over the i	000.

$$T_{p} = \dots [1]$$

(c) Pour 200 cm³ of hot water into beaker **Q** and replace the lid. Repeat the procedure in (a)(i) and (a)(ii). Record your results in Table 3.2.

Table 3.2

time t / s	temperature T / °C
0	
30	
60	
90	
120	
150	
180	

beaker **Q** [2]

(d) Calculate the fall in temperature $T_{\rm Q}$ of the hot water in beaker **Q** over the 180 s.

$$T_{Q}$$
 =[1]

(e) State which is the more effective method of reducing thermal energy loss from a beaker of hot water.

Explain how you reach this conclusion.

method

.....[1]

(f) Apart from adding a lid, state **one** other way of reducing the loss of thermal energy from beaker **P** even further.

______[1]

(g) State one condition which should be controlled to ensure that the comparison between beaker **P** and beaker **Q** is fair.

.....[1

NOTES FOR USE IN QUALITATIVE ANALYSIS

Test for anions

anion	test	test result
carbonate (CO ₃ ²⁻)	add dilute acid	effervescence, carbon dioxide produced
chloride (Cl ⁻) [in solution]	acidify with dilute nitric acid, then add aqueous silver nitrate	white ppt.
nitrate (NO ₃ ⁻) [in solution]	add aqueous sodium hydroxide then aluminium foil; warm carefully	ammonia produced
sulfate (SO ₄ ² -) [in solution]	acidify then add aqueous barium chloride <i>or</i> aqueous barium nitrate	white ppt.

Test for aqueous cations

cation	effect of aqueous sodium hydroxide	effect of aqueous ammonia
ammonium (NH ₄ ⁺)	ammonia produced on warming	-
copper(II) (Cu ²⁺)	light blue ppt., insoluble in excess	light blue ppt., soluble in excess giving a dark blue solution
iron(II) (Fe ²⁺)	green ppt., insoluble in excess	green ppt., insoluble in excess
iron(III) (Fe ³⁺)	red-brown ppt., insoluble in excess	red-brown ppt., insoluble in excess
zinc (Zn ²⁺)	white ppt., soluble in excess giving a colourless solution	white ppt., soluble in excess giving a colourless solution

Test for gases

gas	test and test results
ammonia (NH ₃)	turns damp red litmus paper blue
carbon dioxide (CO ₂)	turns limewater milky
chlorine (Cl ₂)	bleaches damp litmus paper
hydrogen (H ₂)	"pops" with a lighted splint
oxygen (O ₂)	relights a glowing splint

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.