Cambridge IGCSE[™]

CHEMISTRY

Paper 2 Multiple Choice (Extended)

October/November 2023 45 minutes

0620/22

You must answer on the multiple choice answer sheet.

You will need: Multiple choice answer sheet Soft clean eraser Soft pencil (type B or HB is recommended)

INSTRUCTIONS

- There are **forty** questions on this paper. Answer **all** questions.
- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do **not** use correction fluid.
- Do not write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

This document has 16 pages.

1 Part of a cooling curve for water is shown.

What is occurring between points X and Y?

- A Steam is condensing into water.
- **B** The temperature of the water is decreasing.
- C Ice is melting.
- **D** Particles are losing heat to the surroundings.
- 2 Which statements about clean, dry air are correct?
 - 1 It is a mixture of elements only.
 - 2 It is a mixture of elements and compounds.
 - 3 It contains only non-metals.
 - **A** 1 and 3 **B** 1 only **C** 2 and 3 **D** 2 only
- **3** A representation of an atom is shown.

What is the nucleon number of this atom?

A 6 **B** 7 **C** 12 **D** 13

4 The percentage abundances of three isotopes in a sample of neon are shown.

isotope	percentage abundance/%
²⁰ ₁₀ Ne	90.48
²¹ ₁₀ Ne	0.27
²² ₁₀ Ne	9.25

What is the relative atomic mass, A_r , of this sample of neon?

5 Potassium reacts with iodine to form potassium iodide.

Which statement about potassium iodide is correct?

- A Each potassium atom shares a pair of electrons with an iodine atom.
- **B** In potassium iodide, the particles of potassium have more protons than electrons.
- **C** Potassium iodide has a high melting point because it is a covalent compound.
- **D** Potassium iodide has a low melting point because it is an ionic compound.
- 6 Which substance has the lowest melting point?
 - A graphite
 - B methanol
 - **C** silicon(IV) oxide
 - D sodium chloride
- 7 The diagram shows the structure of a molecule of ethyl ethanoate.

What is the molecular formula of a molecule of ethyl ethanoate?

A CHO **B** $C_4H_8O_2$ **C** $C_4(H_2)_2(O_2)$ **D** C_2H_4O

- 4
- 8 A hydrocarbon contains 85.7% of carbon by mass.

What is the empirical formula of the hydrocarbon?

A CH_2 **B** CH_4 **C** C_2H_5 **D** C_3H_6

9 The formula of a compound containing element X is Na₂X₂O₃.
The relative formula mass of the compound is 158.
What is the relative atomic mass of X?
A 32
B 59.5
C 64
D 119

10 Dilute aqueous potassium chloride is electrolysed using platinum electrodes.

Which row identifies the product at each electrode?

	anode	cathode
Α	chlorine	hydrogen
в	chlorine	potassium
С	oxygen	hydrogen
D	oxygen	potassium

11 Concentrated aqueous copper(II) chloride is electrolysed using copper electrodes, as shown.

What happens to the mass of each electrode during this process?

	positive electrode	negative electrode
Α	decreases	decreases
в	decreases	increases
С	increases	decreases
D	increases	increases

12 The initial and final temperatures of four different reactions are measured.

Which reaction is the **least** exothermic?

	initial temperature /°C	final temperature /°C
Α	19	25
В	21	18
С	22	17
D	22	26

- **13** Which equation represents an endothermic reaction?
 - **A** $Cl_2(g) \rightarrow 2Cl(g)$
 - $\label{eq:charged} \begin{array}{ccc} \textbf{B} & CH_4(g) \ + \ 2O_2(g) \ \rightarrow \ CO_2(g) \ + \ 2H_2O(I) \end{array}$
 - $\textbf{C} \quad H(g) \ + \ H(g) \ \rightarrow \ H_2(g)$

14 Methane burns in oxygen to form carbon dioxide and water.

$$CH_4(g)$$
 + $2O_2(g) \rightarrow CO_2(g)$ + $2H_2O(I)$

The bond energies are shown.

bond	bond energy in kJ/mol
C–H	410
C–O	360
C=O	805
O–H	460
0–0	146
O=O	496

What is the energy change for this reaction?

 $\label{eq:alpha} \textbf{A} = -818\,kJ/mol \quad \textbf{B} = -102\,kJ/mol \quad \textbf{C} = +102\,kJ/mol \quad \textbf{D} = +818\,kJ/mol$

15 Hydrochloric acid is added to excess calcium carbonate in two separate experiments.

Two different concentrations of hydrochloric acid are used but the temperature is the same in both experiments.

The graph of the results shows the volume of carbon dioxide gas given off over time.

Which row is correct?

	particles in 2.0 mol/dm ³ compared to 1.0 mol/dm ³		
	collision rate collision energy		
Α	higher	no change	
В	higher	higher	
С	lower	no change	
D	lower	higher	

16 The decomposition of dinitrogen tetroxide, N_2O_4 , into nitrogen dioxide, NO_2 , is a reversible reaction.

The equation for the reaction is shown.

$$N_2O_4(g) \rightleftharpoons 2NO_2(g)$$

The forward reaction is endothermic.

Which row shows the effect on the position of equilibrium and the rate of the reverse reaction when the temperature is increased?

	position of equilibrium	rate of the reverse reaction
Α	shifts to the left	decreases
в	shifts to the left	increases
С	shifts to the right	decreases
D	shifts to the right	increases

17 In a blast furnace, iron(III) oxide is converted to iron and carbon monoxide is converted to carbon dioxide.

$$Fe_2O_3$$
 + 3CO \rightarrow 2Fe + 3CO₂

What happens to each of these reactants?

- **A** Both iron(III) oxide and carbon monoxide are oxidised.
- **B** Both iron(III) oxide and carbon monoxide are reduced.
- **C** Iron(III) oxide is oxidised and carbon monoxide is reduced.
- **D** Iron(III) oxide is reduced and carbon monoxide is oxidised.
- **18** Which row describes what happens to Fe^{2+} ions when they are oxidised?

	electron movement	oxidation number of iron
Α	they gain electrons	decreases
В	they gain electrons	increases
С	they lose electrons	decreases
D	they lose electrons	increases

- 19 In which reaction does an acid react with a base?
 - A Dilute sulfuric acid is added to a piece of magnesium ribbon producing hydrogen.
 - **B** Dilute sulfuric acid is added to aqueous barium chloride producing a white precipitate of barium sulfate.
 - **C** Aqueous sodium hydroxide is added to aqueous copper(II) sulfate producing a blue precipitate of copper(II) hydroxide.
 - **D** Aqueous sodium hydroxide is added to solid ammonium sulfate producing gaseous ammonia.
- 20 Which element forms an oxide that reacts with an aqueous solution of a base?
 - A argon
 - B sulfur
 - C magnesium
 - **D** copper

- **21** Which method is used to produce insoluble salts?
 - A addition of excess insoluble base to an acid
 - B addition of excess metal to an acid
 - **C** precipitation using two aqueous solutions
 - D titration using an acid and an alkali
- 22 The noble gases are in Group VIII of the Periodic Table.

Some properties of the first four noble gases are shown.

noble gas	boiling point in °C	density in g/dm ³
helium	-267	0.179
neon	-246	0.900
argon	-186	1.782
krypton	-152	3.708

Which row identifies the trends in boiling point and in density as Group VIII is descended?

	boiling point	density
Α	decreasing	increasing
В	increasing	increasing
С	decreasing	decreasing
D	increasing	decreasing

23 Some properties of element R are shown.

melting point in °C	98
boiling point in °C	883
reaction with cold water	gives off H_2 gas
reaction when heated with oxygen	burns to give a white solid

In which part of the Periodic Table is R found?

- A Group I
- **B** Group VII
- **C** Group VIII
- D transition elements

- 24 Which pair of compounds shows that transition elements have variable oxidation states?
 - $\label{eq:cr2O3} \textbf{A} \quad Cr_2O_3 \text{ and } CrBr_3$
 - **B** $CuSO_4$ and $CuCl_2$
 - **C** Fe_2O_3 and $FeCl_2$
 - **D** NiO and NiC l_2
- **25** The list gives the order of some metals and hydrogen in the reactivity series.

Metal X is also included.

most reactive	K
	Mg
	Zn
	Н
	Х
least reactive	Cu

Which row shows the properties of metal X?

	reacts with dilute acids	oxide reduced by carbon
Α	no	no
в	no	yes
С	yes	no
D	yes	yes

26 When zinc is added to an aqueous solution containing magnesium ions, there is no reaction.

Which species has the greatest tendency to lose electrons?

A Mg **B** Mg²⁺ **C** Zn **D** Zn²⁺

- 27 Which gas in the air is needed for iron to rust?
 - **A** argon
 - B carbon dioxide
 - **C** nitrogen
 - **D** oxygen

- **28** Which coating prevents iron from rusting even when the coating is damaged?
 - A grease
 - **B** paint
 - **C** plastic
 - D zinc
- 29 Why is limestone added to the blast furnace?
 - A It neutralises the molten slag produced.
 - **B** It reacts with impurities to form slag.
 - **C** It releases carbon dioxide which reduces the iron(III) oxide.
 - D It removes acidic gases such as carbon dioxide.
- **30** The flow chart shows stages in the treatment of river water to produce drinking water.

What occurs at stages J and K?

	J	К
Α	distillation	chlorination
В	distillation	filtration
С	filtration	chlorination
D	filtration	distillation

31 Carbon dioxide acts as a greenhouse gas by interacting with a particular type of energy that radiates from the Earth's surface into the atmosphere.

Which type of energy is involved and what happens when this energy interacts with carbon dioxide molecules?

	type of energy involved	what happens
Α	thermal	carbon dioxide molecules increase the Earth's energy loss to space
В	thermal	carbon dioxide molecules absorb the energy
С	light	carbon dioxide molecules increase the Earth's energy loss to space
D	light	carbon dioxide molecules absorb the energy

32 Oxides of nitrogen, such as NO and NO₂, are formed in the petrol engines of cars.

They are removed from the exhaust gases by reactions in the car's catalytic converter.

Which row describes how oxides of nitrogen are formed in a petrol engine and a reaction that happens in the catalytic converter?

	how oxides of nitrogen are formed	a reaction that happens in the catalytic converter
Α	by the reaction between nitrogen and oxygen from the air	$2NO + 2CO \rightarrow N_2 + 2CO_2$
В	by the reaction between nitrogen and oxygen from the air	$2NO + 2H_2 \rightarrow N_2 + 2H_2O$
С	by the reaction between nitrogen compounds in petrol and oxygen from the air	$2NO + 2CO \rightarrow N_2 + 2CO_2$
D	by the reaction between nitrogen compounds in petrol and oxygen from the air	$2NO + 2H_2 \rightarrow N_2 + 2H_2O$

33 Which diagram shows the displayed formula for the named organic compound?

34 What is the total number of covalent bonds in a molecule of butane, C_4H_{10} ?

35 Propane reacts with chlorine in a substitution reaction.

Which reaction condition is required for the reaction to occur?

- A acid catalyst
- B iron catalyst
- **C** temperature of 400 °C
- D ultraviolet light
- **36** The structure of an organic compound is shown.

Which structure represents a molecule that reacts with steam to produce this product?

- **37** Which term describes nylon?
 - A addition polymer
 - B natural polymer
 - C polyamide
 - D polyester

14

38 Ethene can be polymerised.

Which diagram represents the structure of the product formed?

- **39** An acid–base titration is described.
 - 25.0 cm³ of dilute aqueous alkali is put into a conical flask.
 - Indicator is added to the flask.
 - Dilute acid is added to the aqueous alkali until the indicator changes colour.
 - The volume of acid used is then recorded.

Which use of apparatus is correct?

- **A** The $25.0 \,\mathrm{cm}^3$ of aqueous alkali is measured using a volumetric pipette.
- **B** The 25.0 cm³ of aqueous alkali is measured using the lines on the conical flask.
- **C** The volume of acid is measured using a measuring cylinder.
- **D** The volume of acid is measured using a volumetric pipette.

40 Substance Q is investigated using chromatography.

The chromatogram is shown. The diagram is not drawn to scale.

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

							Gro	dnc								
=											≡	≥	>	⋝	II>	<pre>III</pre>
						-										2
						т										He
			Key			hydrogen 1										helium 4
4		ŭ	atomic number		L						5	9	7	8	6	10
Be		ato	mic sym	lod							ш	ပ	z	0	LL	Ne
beryllium 9		rela	name tive atomic me	tss							boron 11	carbon 12	nitrogen 14	oxygen 16	fluorine 19	neon 20
12											13	14	15	16	17	18
Mg											Al	S.	٩	ა	Cl	Ar
magnesium 24											aluminium 27	silicon 28	phosphorus 31	sulfur 32	chlorine 35.5	argon 40
20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
Ca	Sc	i	>	ŗ	Mn	Fe	ပိ	ïZ	Cu	Zn	Ga	Ge	As	Se	Ъ	, К
calcium 40	scandium 45	titanium 48	vanadium 51	chromium 52	manganese 55	iron 56	cobalt 50	nickel	copper 64	zinc	gallium 70	germanium 73	arsenic 75	selenium 79	bromine	krypton 84
38	39	40	41	42	43	8 4	45	46	47	48	49	50	51	52	53	54
Ś	≻	Zr	qN	Mo	ц	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
strontium	yttrium	zirconium	miobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium 115	tin	antimony	tellurium	iodine	xenon
200	57_71	1.6	26	06	75	76	201	78	201	80	<u></u>	87	83	84	1 <i>21</i> 85	88
, eq	21-11 lanthanoids	Į H	2 4	2	2 Å	² Č	L .		Â	° T	۲ <i>۱</i>	Ph	3 <u>.</u>	^t C	At 8	3 Å
barium		hafnium 178	tantalum	tungsten	rhenium 1 ac	osmium	iridium 100	platinum	gold	mercury	thallium	lead	bismuth	polonium	astatine	radon
88	89-103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118
Ra	actinoids	Rf	Db	Sa	Bh	Hs	Mt	Ds	Ra	ы С	ЧN	Fl	Mc	2	L S	Ö
radium -		rutherfordium –	dubnium I	seaborgium -	bohrium –	hassium -	meitnerium -	darmstadtium 	roentgenium -	copernicium -	nihonium	flerovium -	moscovium -	livermorium –	tennessine -	oganesson -
	-															
	57	58	59	60	61	62	63	64	65	99	67	68	69	70	71	
ds	La	Ce	Pr	ΡN	Pm	Sm	Eu	Ъd	Tb	D	Ч	ш	Tm	Υb	Lu	
	lanthanum 139	cerium 140	praseodymium 141	neodymium 144	promethium -	samarium 150	europium 152	gadolinium 157	terbium 159	dysprosium 163	holmium 165	erbium 167	thulium 169	ytterbium 173	lutetium 175	
	68	06	91	92	93	94	95	96	97	98	66	100	101	102	103	
	Ac	Th	Ра	⊃	Np	Pu	Am	Cm	異	Ç	ШS	Еm	Md	No	Ļ	

0620/22/O/N/23

70 Ytterbium 173 102 NO nobelium

68 Er 167 100 Fm femium

67 Holmium 165 99 ES

65 Tb 159 97 97 berkelium

64 adolinium 157 96 eurium -

94 Pu Dutonium

protactinium 141 91 **Pa** 231 231

93 Np Ieptunium

uranium 238

thorium 232

57 La anthanum 139 89 89 AC

actinoids

lanthanoids

awrencium

mendelevium

californium

Am nericium

The volume of one mole of any gas is $24\,dm^3$ at room temperature and pressure (r.t.p.).