CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0620 CHEMISTRY

0620/31

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

Page 2	Mark Scheme	Sylla	bus	Paper
	Cambridge IGCSE – October/November 2014	062	20	31

1 (a) Match the following pH values to the solutions given below.

1 3 7 10 13

The solutions all have the same concentration.

	aqu dilu aqu aqu	ution leous ammonia, weak base te hydrochloric acid, a strong acid leous sodium hydroxide, a strong base leous sodium chloride, a salt te ethanoic acid, a weak acid	pH 10 1 13 7 3	[5]
(b)	OR par	drochloric acid strong acid or ethanoic acid weak acid hydrochloric acid completely ionised or ethanoic acid tially ionised		[1]
	hyd	rochloric acid greater concentration of/more H ⁺ ions (t	han ethanoic acid)	[1]
(c)	Rat	e of reaction with Ca, Mg, Zn, Fe		[1]
	Stro	ong (hydrochloric) acid bubbles faster or more bubbles	s or dissolves faster	[1]
		: rate of reaction with (metal) carbonate	alves factor (only if	[1]
		ong (hydrochloric) acid faster or more bubbles or disso conate insoluble)	orves faster (only fi	[1]
		: electrical conductivity ong (hydrochloric) acid better conductor		[1] [1]
				[Total: 9]
(a)	soft	because weak forces between layers/sheets/rows		[1]
	laye	ers can slip/slide		[1]
	goo	d conductor because electrons can move/mobile		[1]
(b)		soft: pencils or lubricant or polish d conductor: electrodes or brushes (in electric motors)	[1] [1]
(c)	(i)	every silicon atom is bonded/attached to 4 oxygen at bonded/attached to two silicon atoms	oms or every oxygen	[1]
	/ii\	Any two from:		

(ii) Any **two** from:

2

high melting point/boiling point hard colourless crystals/shiny poor/non-conductor of electricity/insulator insoluble in water

[Total: 8]

[2]

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2014	0620	31

3 (a) Any two from:

bleach/making wood pulp/making paper food/fruit juice/wine preservative fumigant/sterilising/insecticide

[2]

(b) heating/roasting/burning (zinc sulfides) in air/oxygen COND on M1 [1] [1]

(c) (i) V_2O_5

[1]

(ii) position of equilibrium shifts right/yield increases to save energy

[1] [1]

(iii) faster reaction/rate

[1]

more collisions per second/higher collision frequency

[1]

fewer moles/molecules (of gas) on right

[1]

[1]

[1]

(so) position of equilibrium shifts right/yield increases

[1]

(d) (the reaction is) too violent/too exothermic or produces mist/fumes (of acid)

[Total: 12]

4 (a) (i) insufficient/limited oxygen

or 2C + $O_2 \rightarrow 2CO$

[1]

coke/carbon reacts with carbon dioxide or C + $CO_2 \rightarrow 2CO$

[2]

(ii) $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ species (1) balancing (1)

[1]

(b) (i) carbon dioxide

[2]

(ii) CaO + SiO₂ \rightarrow CaSiO₃ [1] each side correct

(iii) (molten) iron higher density (than slag)

[2]

(iv) No oxygen in contact with iron **or** layer of slag prevents hot iron reacting with oxygen/air **or** (all) oxygen reacts with carbon (so no oxygen left to react with iron)

[1]

(c) (i) air/oxygen and water (need both)

[1]

Syllabus 0620 Paper 31

			Cambridge 1000L — October/November 2014 0020	31
		(ii)	aluminium oxide layer is impervious or non-porous or passive or unreactive or will not allow water/air to pass through it (rust allows passage of water or air or it flakes off)	[1]
	(d)	(i)	zinc more reactive (than iron/steel) loses electrons electrons move (from zinc) to iron Zinc reacts (with air and water) or zinc corrodes or zinc is oxidised or zinc is anodic or zinc forms positive ions or zinc forms Zn²+ or iron and steel don't react with air/water or iron and steel are not oxidised or iron and steel do not form ions or iron and steel do not lose electrons or iron and steel are	[1] [1] [1]
			cathodic	[1]
		(ii)	R to L in wire	[1]
		(iii)	$2H^+ + 2e^- \rightarrow H_2$ species (1) balancing (1)	
				[Total: 19]
5	(a)		ogen and oxygen react nigh temperatures (in engine)	[1] [1]
	(b)	M1	carbon monoxide (converted to) carbon dioxide or 2CO + $O_2 \rightarrow 2CO_2$	[1]
			(by) oxides of nitrogen (which are reduced to) nitrogen 2NO \rightarrow N ₂ + O ₂ or 2NO ₂ \rightarrow N ₂ + 2O ₂	[1]
		М3	hydrocarbons (burn) making water	[1]
			products: any two from: bon dioxide, water, nitrogen	[1]
	(c)		d compounds are toxic or brain damage or reduce IQ or nausea or kidney ure or anaemia	[1]
				[Total: 7]
6	(a)	(i)	butanoic acid methanol	[1] [1]
		(ii)	number of moles of ethanoic acid = 0.1 number of moles of ethanol = 0.12(0) the limiting reagent is ethanoic acid number of moles of ethyl ethanoate formed = 0.1 maximum yield of ethyl ethanoate is 8.8 g	[1] [1] [1] [1]

Mark Scheme
Cambridge IGCSE – October/November 2014

Page 4

Page 5		Mark Scheme Syllabus		Paper
	<u> </u>	Cambridge IGCSE – October/November 2014	0620	31
	tw	rrect ester linkage [1] o ester linkages (COND on M1) ntinuation (COND on M2)		[1] [1]
	(c) (i)	add bromine water/bromine turns colourless remains brown/orange/reddish brown/yellow		[1] [1] [1]
		ALLOW: potassium manganate(VII) (acidic or alkaline) correct colour colourless/green or brown ppt stays pink/purple		[1] [1] [1]
	(ii)			[1]
		COND alkyl group is C _n H _{2n+1} which is NOT C ₁₇ H ₃₃ or C ₁₇ H ₃₅ is C _n H _{2n+1} or less hydrogen		[1]
	/::: \			
	(iii)	soap or (sodium) salt (of a carboxylic acid) or carboxylate		[1]
		alcohol		[1]
				[Total: 17]
7	(a) (i)	6Li + N ₂ = 2Li ₃ N species (1) balancing (1)		
	(ii)	N ³⁻ ion drawn correctly		[1]
		Charges correct (minimum 1 × Li ion and 1 nitride ion)		[1]
	(b) (i)	$3\times shared$ pairs between N and $3\times F$		[1]
		only 2 non-bonding electrons on N, 6 non-bonding electrons on eac (COND on first point)	ch F	[1]
	(ii)	Strong attractive forces/strong ionic bonds in lithium nitride		[1]
		weak (attractive) forces between molecules in NF ₃		[1]
				[Total: 8]