UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/33

Paper 3 (Extended Theory), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0620	33

1	(a) ((i)	Cs / Fr	[1]
	(i	ii)	Br	[1]
	(ii	ii)	U / Pu / Th	[1]
	(i	v)	I or At	[1]
	(v)	As	[1]
	(v	/i)	He / Ne / Ar / Kr / Xe	[1]
	(b) ((i)	GeO ₂ / GeO	[1]
	(i	ii)	TeBr ₂ / TeBr ₄	[1]
	(c) ((i)	Sr ²⁺	[1]
	(i	ii)	F ⁻	[1]
2	(a) ((i)	molecule / unit / simple compound / building block and used to make a polymer / big molecule / long chain / macromolecule	[1]
			formation of a polymer / big molecule / long chain / macromolecule ${\bf or}$ joining of monomers ${\bf and}$ elimination / removal / formation of a simple or small molecule / H_2O / HCl ${\bf note}$: two points needed for 1 mark in both parts	[1]
	(i	ii)	-O- linkage three correct monomer units continuation	[1] [1] [1]
	(b)	(i)	catalyst and from living organism accept: biological catalyst / protein catalyst	[1]
	(i	ii)	enzyme denatured / destroyed	[1]
	(ii	ii)	chromatography locating agent / description of locating agent measure $R_{\rm f}$ / compare $$ with standards	[1] [1] [1]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0620	33

3	(a)	sodium hydroxide solution warm	[1] [1]
		(only) ammonium phosphate gives off ammonia / gas (which will turn red litmus paper blue)	[1]
		or: sodium hydroxide solution dissolve fertiliser in water Ca ²⁺ gives (white) ppt or:	[1] [1] [1]
		flame test Ca ²⁺ brick red / orange / orange-red NH ₄ ⁺ no colour	[1] [1] [1]
	(b)	iron catalyst pressure 150–300 atmospheres temperature 370–470 °C $N_2 + 3H_2 = 2NH_3$ note: units required for temperature and pressure	[1] [1] [1]
	(c)	potassium / K	[1]
	(d)	(i) needs to be soluble / in solution (to be absorbed by plants)	[1]
		(ii) base proton acceptor	[1] [1]
	(e)	plant growth depends on soil acidity or pH / plants have optimum pH (for growth)	[1]
		add Ca(OH) ₂ / CaO / CaCO ₃ / lime / slaked lime / quicklime / limestone	[1]
4	(a)	(i) alloy / mixture iron and carbon / another metal or element etc.	[1] [1]
		(ii) electron loss	[1]
	(b)	electrons move from / lost from Mg to steel / iron	[1] [1]
	(c)	(i) 2H ⁺ + 2e → H ₂ not balanced = 1	[2]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2011	0620	33
<i>(</i> 11)	isial protection is a call		

		(ii)	sacrificial protection – is a <u>cell</u> cathodic protection – is electrolysis NOT electrical cell or:	[1] [1]
			sacrificial protection – electrons from more reactive metal cathodic protection – electrons from battery etc. or:	[1] [1]
			sacrificial protection – does not need or use power / battery / electricity / electrical cell	[1]
			cathodic protection – does or: sacrificial protection uses up / needs a sacrificial / more reactive metal cathodic protection doesn't	[1] [1] [1]
5	(a)	_	t / UV / sun / sunlight / solar energy rts / initiates / speeds up	[1] [1]
	(b)	(i)	0.03 % – 1(%) carbon dioxide accept: less than 1(%) 20 % – 21(%) oxygen	[1] [1]
		(ii)	remove carbon dioxide from atmosphere produce oxygen any two from: photosynthesis	[1] [1]
			chlorophyll / chloroplast light / sun / sunlight / UV / photochemical formed carbohydrates / glucose / sugar(s)	[2]
	(c)	(ligh (on	ction is photochemical / needs light nt) causes formation of silver / silver ions reduced formation of silver) goes black light still silver(I) bromide / stays white / no reaction	[1] [1] [1]
6	(a)	bari bari bari nick nick	three from: ium more reactive / forms ions more readily ium reacts with (cold) water, nickel does not ium more vigorous with acids kel compounds coloured, barium compounds white kel has more than one oxidation state, barium has one kel / nickel compounds catalysts, barium / barium compounds not catalysts kel forms complex ions, barium does not	[3]
	(b)	(i)	forward reaction favoured by low temperatures / reverse reaction favoured by high temperatures / heat exothermic	[1] [1]
		(ii)	products / RHS has fewer moles / molecules / smaller volume / ORA	[1] [1]
		(iii)	do not react or left behind / left at 60°C	[1]

Paper

Syllabus

	Page 5		Mark Scheme: Teachers' Version	Syllabus	Paper
			IGCSE – October/November 2011	0620	33
	(iv)	cath anod	trolysis ode (pure) nickel de impure nickel trolyte is a soluble nickel salt		[1] [1] [1] [1]
7 (8	(a) correct method shown i.e. $126/14$ (= 9) or $14x = 126$ or $x = 9$ or $(12 \times 9) + 18 = 126$ C_9H_{18} note: correct formula only = 1				[1] [1]
(i	b) (i)	C—(ydrogen atoms 1bp C bond atoms 1bp : 2 bp		[1] [1] [1]
	(ii)		ect repeat unit inuation		[1] [1]
	(iii)	H-H bond 2C-H –130 or:	ds broken $+436 \text{ (kJ/mol)}$ C=C $+610 = +1046 \text{ (kJ/mol)}$ ds formed $-415 \times 2 \text{ kJ/mol}$ C-C $-346 = -1176 \text{ (kJ/mol)}$ b kJ/mol / more energy released than absorbed		[1] [1] [1]
		3882 bond 4012 –130 allo v	ds broken 2 (kJ/mol) ds formed 2 (kJ/mol) 0 kJ/mol / more energy released than absorbed w: ecf for final mark as long as the answer is not po e: units not necessary	sitive	[1] [1] [1]
(0	c) (i)	buta	n-1-ol or butan-2-ol or butanol		[1]
	(ii)		-CH ₂ -CH(Br)-CH ₂ Br ₃ Br ₂ = 1 2: any other dibromobutane = 0		[2]
	(iii)	HI			[1]

Mark Scheme: Teachers' version

Page 5