UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Paper 3 (Extended) October/November 2005 1 hour 15 minutes Candidates answer on the Question Paper. No Additional Materials required. Candidate Name Candidate Number Candidate Number

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

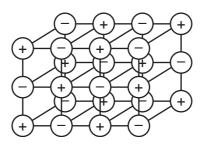
WRITE IN THE BOXES PROVIDED ON THE QUESTION PAPER

DO NOT WRITE IN THE BARCODE.

DO NOT WRITE IN THE GREY AREAS BETWEEN THE PAGES.

Do not use staples, paper clips, highlighters, glue or correction fluid.

You may use a calculator.

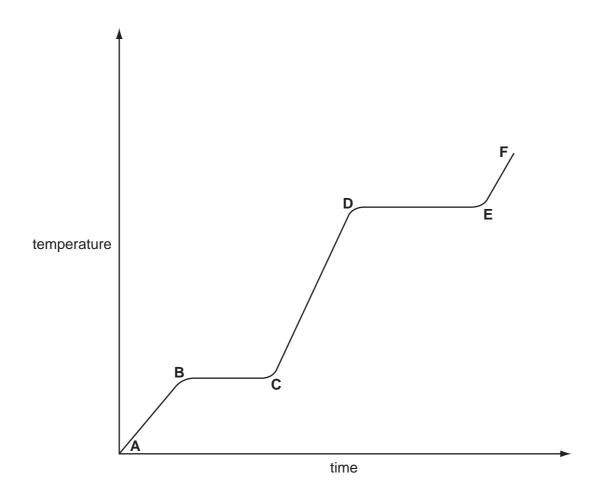

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed on page 16.

For Examin	er's Use
1	
2	
3	
4	
5	
6	
7	
Total	

1	(a)	The structure	of a	typical	ionic	compound	is a	regular	arrangement	of	positive	and
		negative ions.										


	(i)	What is the name of this regular arrangement of particles?	
			[1]
	(ii)	Give two physical properties of ionic compounds.	
			 [2]
			(-)
(b)		s are formed by electron loss or gain. The electron distribution of a magnesi m is 2 + 8 + 2 and of a nitrogen atom is 2 + 5.	um
	(i)	Give the formula of the magnesium ion.	
			[1]
	(ii)	Give the formula of the nitride ion.	
			[1]
	(iii)	What is the formula of the ionic compound, magnesium nitride?	
			[1]
	(iv)	In this compound there is an ionic bond. Why are the two ions attracted to ear other?	ach
			[1]

© UCLES 2005 0620/03/O/N/05

2 Ethanoic acid is a colourless liquid at room temperature. It has the typical acid properties and forms compounds called ethanoates.

For Examiner's Use

(a) A pure sample of ethanoic acid is slowly heated from 0°C to 150°C and its temperature is measured every minute. The results are represented on the graph below.

(i) Name the change that occurs in the region **D** to **E**.

[1

(ii) What would be the difference in the region **B** to **C** if an impure sample had been used?

[1]

(iii) Sketch on the graph how the line would continue if the acid was heated to a higher temperature. [1]

(iv)	Complete th	ne following	table tha	t compares	the	separation	and	movement	of	the
	molecules in	າ regions C t	o D with	those in E to	F .					

		C to D	E to F
	separation (distance between particles)		
	movement of particles	random and slow	
	Can particles move apart to fill any volume?		
			[5]
(b)	Complete the word equations	for the reactions of ethanoi	c acid.
	calcium + ethanoic ac	:id →	
		+	
	+ ethan	oic acid → zinc ethanc	pate + water [2]
(c)	Write the symbol equation hydroxide.	for the reaction between	n ethanoic acid and sodium
			[2]

© UCLES 2005 0620/03/O/N/05

3	Reversible reaction.	reactions	can	come to	equilibrium.	They	have	both	a	forward	and	а	backwar	ď

(a) When water is added to an acidic solution of bismuth(III) chloride, a white precipitate forms and the mixture slowly goes cloudy.

(i)	Explain why the rate of the forward reaction decreases with time.	
		[2]
(ii)	Why does the rate of the backward reaction increase with time?	
		 [1]
(iii)	After some time why does the appearance of the mixture remain unchanged?	
		 [2]
(iv)	When a few drops of concentrated hydrochloric acid are added to the clo mixture, it changes to a colourless solution. Suggest an explanation.	udy
		[2]

1	h١	Both of the following	reactions are	reversible
М		Dout of the following	reactions are	

(i)	Suggest a reason why an increase in pressure does not affect the position of equilibrium for reaction 1.
	[1]
(ii)	What effect would an increase in pressure have on the position of equilibrium for reaction 2? Give a reason for your answer.

4		alce anol.	lcohols form a homologous series. The first member is methanol and the fourth is ol.						
			CH_3-OH $CH_3-CH_2-CH_2-OH$ methanol butanol						
	(a)	(i)	Give two general characteristics of a homologous series.						
				[2]					
		(ii)	Calculate the mass of one mole of the C_8 alcohol.						
				[2]					
	(b)	Give	e the name and structural formula of the third member of this series.						
		nan	ne	[1]					
		stru	ctural formula						
				F41					
				[1]					
	(c)	The	structural formula of the fifth member, pentan-1-ol, is drawn below.						
			$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH$						
		(i)	Draw the structural formula of an isomer of this alcohol.						

[1]

(ii)	Predict	the names of the product(s) formed when pentan-1-ol								
	•	reacts with an excess of oxygen,								
	and [
	•	is dehydrated to form an alkene,								
			[1]							
	•	is oxidised by acidified potassium dichromate(VI).								
			[1]							

© UCLES 2005

	um and zinc are bo mistry is similar to		alency of 2. Strontiu	m is more reactive tha	n zinc.				
(a) (i)) Complete the following table that shows the number of protons, electrons and neutrons in each particle.								
	particle	protons	electrons	neutrons					
	⁸⁸ Sr								
	⁹⁰ Sr								
	⁶⁵ Zn ²⁺								
					[3]				
(ii)	Explain why ⁸⁸ Sr	and ⁹⁰ Sr are isoto	nes						
(,	=Apiaiii IIII)		p 00.		[4]				
					[1]				
(iii)	Complete the ele	ectron distribution of	of an atom of stronti	um.					
	2 +	8 +	18 +	+	[1]				
(b) Th	e major ore of zinc	is zinc blende, Zn	IS.						
(i)	Describe how zir	nc is extracted from	n zinc blende.						
					[2]				
(ii)	Give a use of zin	C							
(11)	GIVE a disc of Zill	.							
					[1]				

5

(c)		e major ore of strontium is its carbonate, SrCO ₃ . Strontium is extracted by ctrolysis of its molten chloride.	the
	(i)	Name the reagent that will react with the carbonate to form the chloride.	
			[1]
	(ii)	The electrolysis of molten strontium chloride produces strontium metal a chlorine. Write ionic equations for the reactions at the electrodes.	and
		negative electrode (cathode)	
		positive electrode (anode)	[2]
	(iii)	One of the products of the electrolysis of concentrated aqueous strontium chlor is chlorine. Name the other two.	ride
			[2]
(d)	Bot	h metals react with water.	
	(i)	Write a word equation for the reaction of zinc and water and state the reaction conditions.	tion
		word equation	[1]
		conditions	[2]
	(ii)	Write an equation for the reaction of strontium with water and give the reaction.	tion
		equation	[2]
		condition	[1]

6 (a) The following method is used to make crystals of hydrated nickel sulphate.
An excess of nickel carbonate, 12.0 g, was added to 40 cm³ of sulphuric acid, 2.0 mol/dm³. The unreacted nickel carbonate was filtered off and the filtrate evaporated to obtain the crystals.

For Examiner's Use

$$NiCO_3 + H_2SO_4 \longrightarrow NiSO_4 + CO_2 + H_2O$$

 $NiSO_4 + 7H_2O \longrightarrow NiSO_4.7H_2O$

Mass of one mole of NiSO₄.7H₂O = 281 g Mass of one mole of NiCO₃ = 119 g

	(i)	Calculate the mass of unreacted nickel carbonate.	
		Number of moles of H_2SO_4 in 40 cm ³ of 2.0 mol/dm ³ acid = 0.08	
		Number of moles of NiCO ₃ reacted =	
		Mass of nickel carbonate reacted = g	
		Mass of unreacted nickel carbonate = g [3	3]
	(ii)	The experiment produced 10.4 g of hydrated nickel sulphate. Calculate the percentage yield.	е
		The maximum number of moles of NiSO ₄ .7H ₂ O that could be formed =	
		The maximum mass of NiSO ₄ .7H ₂ O that could be formed = g	
		The percentage yield = % [3	3]
(b)		the above method, a soluble salt was prepared by neutralising an acid with a bluble base. Other salts have to be made by different methods.	n
	(i)	Give a brief description of how the soluble salt, rubidium sulphate could be mad from the soluble base, rubidium hydroxide.	е
		[3	3]

(ii)	Suggest a method of making the insoluble salt, calcium fluoride.
	[3]

© UCLES 2005 0620/03/O/N/05

d of ammonia was 8%.			
$N_2(g) + 3H_2(g) \rightleftharpoons 2$	2NH ₃ (g) the forward	d reaction is exothermic	
catalyst plati temperature pressure 20	600 °C		
Describe how hydrogen is ob	otained for the moderr	n process.	
			[2]
(i) What is the catalyst in th	ne modern process?		
			[1]
(ii) Explain why the modern yield of 15%.	n process, which use	es a lower temperature, has a hi	gher
			[2]
(i) Complete the following reaction between nitrogen		he bond breaking and forming in rm ammonia.	the
bonds	energy change /kJ	exothermic or endothermic	
1 mole of N ≡ N broken	+945	,	
3 moles of broken	+1308		
6 moles of N – H	-2328		
formed	2020		

© UCLES 2005

7

BLANK PAGE

15

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

DATA SHEET
The Periodic Table of the Elements

								Gro	Group								
_	=											≡	≥	>	>	₹	0
	_						- I										4 I
							Hydrogen 1										Helium 2
7	6					-						11	12	14	16	19	20
=	Be											Ω	ပ	z	0	ш	Ne
Lithium 3	Beryllium 4	E.										Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
23	24											27	28	31	32	35.5	40
Na		_											Si	<u>_</u>		CI	Ā
Sodium 11	≥ 6	mn										۶	Silicon 14	rus	_	Chlorine 17	Argon 18
39	40	45	48	51	52	55	99	59	59	64			73			80	84
¥	S	Sc	F	>	ර්	M	Ь	ပိ	Z	చె	Zn	Ga			Se	Ŗ	ž
Potassium 19	m Calcium 20	m Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	Iron 26		Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32		Selenium 34	Bromine 35	Krypton 36
85	88	88	91	63	96		101		106	108	112	115	119		128		131
Rb		>	Zr	S S	Mo				Pd	Ag	ප	In			Тe	Ι	Xe
Rubidium 37	n Strontium 38	Yttrium 39	Zirconium 40	Niobium 41	Molybdenum 42	Technetium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	_	Tellurium 52	lodine 53	Xenon 54
133		139	178	181	184	186			195	197	201	204					
S	Ba	La	Ξ	Та	>	Re	Os	Ľ	₹	Αn	뤈	11	Ър	Ξ		Αt	Rn
Caesium 55	n Barium 56	n Lanthanum 57 *	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmium 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 86
		227															
Ļ																	
Francium 87	n Radium 88	m Actinium 89															
*58-71	l anthan	*58-71 Lanthanoid series	1	140	141	144		150	152	157	159	162	165	167	169	173	175
90-10	90-7 1 Editingiold series	d series		පී				Sm	En	Вd	Q L	ک	운	ш	Tu		Γn
2				Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67		Thulium 69	Ytterbium 70	Lutetium 71
	Ø	a = relative atomic mass	nic mass	232		238											
Key	×	X = atomic symbol	pol			D					BK				Md		בֿ
	р	b = proton (atomic) number		Thorium 90	٤	Uranium 92	Neptunium 93	_	_	Curium 96	Berkelium 97	ε	۶		Mendelevium 101		Lawrencium 103

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).