UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the May/June 2011 question paper for the guidance of teachers

0620 CHEMISTRY

0620/32

Paper 3 (Extended Theory), maximum raw mark 80

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Dogo 2		www.uynanncpape				
	Page 2			Mark Scheme: Teachers' version IGCSE – May/June 2011	Syllabus 0620	Paper 32
				IGCSE – May/Julie 2011	0020	32
1	((i)	Rb/	Sr		[1]
	(ii)	I			[1]
	(i	ii)	Fe			[1]
	(i	v)	Р			[1]
	(1	v)	Si			[1]
2	(a)	(i)	no re	eaction		[1]
			for re	$+$ Sn ²⁺ \rightarrow Fe ²⁺ + Sn / 2Fe + 3Sn ²⁺ \rightarrow 2Fe ³⁺ + 3Sn ealising that there would be a reaction shown by an attempation e.g. writing Fe ₂ Sn etc. allow [1]	ot to write an	[2]
			no re	eaction		[1]
	(•	All th	xide, nitrogen dioxide (accept nitogen(IV) oxide/dinitrogen nree for two ept correct formulae	tetroxide), oxyge	n [2]
			any	two correct products		[1]
	(b)	(i)	tin			[1]
	(•		$^- \rightarrow O_2 + 2H_2O + 4e^-$ palanced allow [1]		[2]
	(i	ii)	sulfu	ric acid		[1]
	` '			ore reactive than iron/steel s reactive than iron/steel		[1] [1]
	zinc corrodes/reacts/loses electrons/is oxidised/is anodic/provides sacrificial proforms positive ions (in preference to iron or steel) ORA allow iron is cathodic for this mark.			rotection/ [1]		
		Iron/steel corrodes/reacts/rusts/loses electrons/is oxidised/is anodic/forms positive			dic/forms positive	
				ce to tin). ORA is cathodic for this mark	·	[1]

[3]

	Page 3	Mark Scheme: Teachers' Version	Syllabus	Paper
		IGCSE – May/June 2011	0620	32
3	. , . ,	<u>centration</u> of thiosulfate is proportional to volume of thiosull volume is same in all experiments) / <u>concentration</u> of acid		`

for comments based on amount / to make experiments fair / comparable allow [1]

- (ii) 240 s [1]
- (iii) decreases/reaction slower [1] because concentration of thiosulfate decreases [1] frequency/chances/rate of collisions decreases [1]

one mark can be scored for less/smaller amount/smaller volume of thiosulfate / less collisions

(b) rate increases with temperature (or at 42 °C) ORA [1]

particles/molecules/ions move faster or gain energy / ORA [1] (don't accept reactants or atoms)

more collisions / ORA [1]

(last mark is for qualification of the collisions) i.e. greater frequency / more per unit time/more often /greater chance/more likely/more collision rate/more effective/more successful/more with activation energy / ORA [1]

One redox equation [1] accept $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$ $2Fe_2O_3 + 3C \rightarrow 4Fe + 3CO_2$ $Fe_2O_3 + 3C \rightarrow 2Fe + 3CO$

$$C + O_2 \rightarrow CO_2$$

 $CO_2 + C \rightarrow 2CO$

[1] one acid/base equation CaO + SiO₂ \rightarrow CaSiO₃ or $CaCO_3 + SiO_2 \rightarrow CaSiO_3 + CO_2$

three more equations or comments carbon burns to form carbon dioxide this reaction is exothermic or produces heat carbon dioxide is reduced to carbon monoxide carbon monoxide <u>reduces</u> hematite to iron carbon reduces hematite to iron limestone removes silica which is an impurity

to form slag which is a waste product

limestone decomposes or symbol/word equation

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	32

5 (a)
$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2/Zn + 2H^+ \rightarrow Zn^{2+} + H_2$$
 [2]

marks are for correct reactants [1] correct products [1] If ionic equation is given don't penalise SO_4^{2-} spectator ions on both sides

the next two marks score for

electrons are lost **AND** gained / oxidation no. or state/valency **both** increases and decreases / two correct half equations i.e.
$$Zn \rightarrow Zn^{2+} + 2e^-$$
 and $2H^+ + 2e^- \rightarrow H_2$ [2]

(d) replace zinc with magnesium replace iron with copper use (more) concentrated sulfuric acid accept use a more concentrated acid / a more concentrated solution

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	32

6

(a) (i)	rate at which methanol formed by forward reaction equals rate it is reacting in back reaction rate of forward reaction equals rate of back reaction allow [1]	[1] [1]
(ii)	low/lower/decreased temperature high/higher/increased pressure Explanations not needed but if they are given they must be correct IGNORE values of temperature and pressure	[1] [1]
(iii)	high pressure can be used / lower pressure due to expense or safety cannot use a low temperature as rate would be too slow the rate would not be econom	[1] nic [1]
(b) (i)	ester	[1]
(ii)	soap/sodium stearate or any acceptable salt/glycerol	[1]
(iii)	burning both fuels forms carbon	[1]
	growing plants to make biodiesel removes carbon dioxide from atmosphere	[1]
(c) (i)	correct SF of an octane	[1]
(ii)	add bromine (water)/bromine in an organic solvent result octane remains brown/orange/yellow/red result octane goes colourless/decolourises not clear/discolours colour of reagent must be shown somewhere for [3] otherwise max [2] accept equivalent test using KMnO ₄ in acid or alkali	[1] [1] [1]

Syllabus

Paper

raye u	Mark Scheme. Teachers Version	Syllabus	rapei
	IGCSE – May/June 2011	0620	32
	(a) 3 bp and 1nbp around phosphorus 1 bp and 3nbp around each chlorine		
(b) (i) PC l_3	$_3$ + 3H ₂ O \rightarrow 3HC l + H ₃ PO ₃		[1]
`´ mea	solutions same concentration sure pH/pH paper/Universal indicator ochloric acid lower pH		[1] [1] [1]
	urs of Universal indicator can be given as red <orange<yell-re <math="" as="" hcl="" is="" long="" lower="" ph="" precise="" than="" values="">H_3PO_3</orange<yell-re>	OW	
add	OR Acid solutions same concentration add magnesium or any named metal above Hydrogen in reactivity series I magnesium		
calc	ium carbonate or any insoluble carbonate ochloric acid react faster/shorter time		[1] [1]
mea	acid solutions same concentration sure electrical conductivity ochloric acid better conductor/bulb brighter		[1] [1] [1]
add	acid solutions same concentration sodium thiosulphate ochloric acid forms precipitate faster/less time		[1] [1] [1]
titrat seco	um hydroxide/sodium carbonate ion cond on correct reagent and mark scores for mention of titration /burette/pipette/indi erimental detail not required	cator.	[1] [1]
any	named soluble calcium salt e.g. calcium chloride/nitrate/hy	droxide	[1]
pred	ipitation/filter/decant/centrifuge		[1]

Mark Scheme: Teachers' version

Page 6

7

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – May/June 2011	0620	32

8	(a) (i)	(to avoid) carbon monoxide formation/so complete combustion occurs/avoid incompcombustion So that ${\rm CO_2}$ is produced	olete [1]
		CO does not dissolve/react with alkali	[1]
	(ii)	CO ₂ is acidic	[1]
	(iii)	volume of gaseous hydrocarbon 20 cm ³ volume of oxygen used = 90 cm ³ volume of carbon dioxide formed = 60 cm ³	[1] [1]
		no mark for 20 cm ³ of hydrocarbon.	
	(iv)	$2C_3H_6(g)/2CxHy(g) + 9O_2(g) \rightarrow 6CO_2(g) + 6H_2O(I)$	[1]
		$OR \dots C_3H_6(g) + 9/2O_2(g) \to 3CO_2(g) + 3H_2O(I)$	
		C_3H_6	[1]
		C ₃ H ₆ can be given in the equation for the second mark	
	(b) (i)	correct structural or displayed formula of another chlorobutane / dichlorobutane	ne / [1]
	(ii)	light / 200 °C / lead tetraethyl	[1]
	(iii)	· · · · · · · · · · · · · · · · · · ·	[1]
		heat/high temperature / Temperature between 450 °C to 800 °C OR catalyst / named catalyst to give a simpler alkane and alkene	[1] [1]
		word equation or equation as example	[1]
		to make polymers / to increase petrol fraction / organic chemicals/petrochemicals	als / [1]