Centre Number

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

Paper 3
May/June 2004
1 hour 15 minutes
Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.
Write in dark blue or black pen in the spaces provided on the Question Paper.
You may use a pencil for any diagrams, graphs or rough working.
Do not use staples, paper clips, highlighters, glue or correction fluid.
You may use a calculator.
Answer all questions.
The number of marks is given in brackets [] at the end of each question or part question.
A copy of the Periodic Table is printed on page 12.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

For Examiner's Use	
1	
2	
3	
4	
5	
6	
7	
Total	

This document consists of 12 printed pages.

1 It was reported from America that a turbine engine, the size of a button, might replace batteries. The engine would be built from silicon which has suitable properties for this purpose.
(a) (i) Why are batteries a convenient source of energy?
\qquad
(ii) The engine will run on a small pack of jet fuel. What other chemical is needed to burn this fuel?
\qquad
(b) Silicon has the same type of macromolecular structure as diamond.
(i) Explain why one atom of either element can form four covalent bonds.
\qquad
\qquad
(ii) Predict two physical properties of silicon.
\qquad
\qquad
(iii) Name a different element that has a similar structure and properties to silicon.
\qquad
(c) Silicon is made by the carbon reduction of the macromolecular compound, silicon(IV) oxide.
(i) Balance the equation for the reduction of silicon(IV) oxide.

(ii) Explain why the silicon(IV) oxide is said to be reduced.
(iii) Describe the structure of silicon(IV) oxide. You may use a diagram.

2 Sulphur is used to make sulphuric acid. In the UK, the annual production of the acid is about 2.5 million tonnes.
(a) The reactions in the manufacture of sulphuric acid by the Contact Process are shown below.

Sulphur		Sulphur dioxide
S	reaction 1	SO_{2}
Sulphur dioxide + oxygen		Sulphur trioxide
$2 \mathrm{SO}_{2}+\mathrm{O}_{2}$	reaction 2	$2 \mathrm{SO}_{3}$
Sulphur trioxide		Oleum
SO_{3}	reaction 3	$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$
Oleum + water		Sulphuric acid
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$	reaction 4	$\mathrm{H}_{2} \mathrm{SO}_{4}$

(i) Give a large scale source of the element sulphur.
\qquad
(ii) State another use of sulphur dioxide.
\qquad
(iii) How is sulphur changed into sulphur dioxide?
\qquad
(iv) Name the catalyst used in reaction 2.
\qquad
(v) Reaction 2 is exothermic. Why is a catalyst, rather than a higher temperature, used to increase the rate of this reversible reaction?
\qquad
\qquad
(vi) Write a word equation for reaction 3.
\qquad
(vii) Write a symbol equation for reaction 4.
\qquad
(b) About one third of this production of acid is used to make nitrogen and phosphoruscontaining fertilisers.
(i) Name the third element that is essential for plant growth and is present in most fertilisers.
\qquad
(ii) Name a nitrogen-containing fertiliser that is manufactured from sulphuric acid.
\qquad
(iii) Rock phosphate (calcium phosphate) is obtained by mining. It reacts with concentrated sulphuric acid to form the fertiliser, superphosphate. Predict the formula of each of these phosphates.

(iv) The ionic equation for the reaction between the phosphate ion and sulphuric acid is shown below.
$\mathrm{PO}_{4}{ }^{3-}+2 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{H}_{2} \mathrm{PO}_{4}^{-}+2 \mathrm{HSO}_{4}^{-}$
Explain why the phosphate ion is described as acting as a base in this reaction.

3 An organic compound decomposes to form nitrogen.

$$
\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}(\mathrm{aq}) \quad \rightarrow \quad \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{I}) \quad+\quad \mathrm{N}_{2}(\mathrm{~g})
$$

(a) Explain the state symbols.
aq
I
g
(b) Draw a diagram to show the arrangement of the valency electrons in one molecule of nitrogen.
(c) The rate of this reaction can be measured using the following apparatus.

The results of this experiment are shown on the graph below.

(i) How does the rate of this reaction vary with time?
\qquad
\qquad
(ii) Why does the rate vary?
\qquad
\qquad
(iii) The reaction is catalysed by copper powder. Sketch the graph for the catalysed reaction on the same grid.
(iv) Why is copper powder more effective as a catalyst than a single piece of copper?

4 (a) Insoluble compounds are made by precipitation.
(i) Complete the word equation for the preparation of zinc carbonate.

(ii) Complete the following symbol equation.

$$
\begin{equation*}
\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\ldots \ldots \mathrm{NaCl} \rightarrow \text {........................... }+ \text {............................ } \tag{2}
\end{equation*}
$$

(iii) Write an ionic equation for the precipitation of the insoluble salt, silver(I) chloride.
\qquad
(b) $2.0 \mathrm{~cm}^{3}$ portions of aqueous sodium hydroxide were added to $4.0 \mathrm{~cm}^{3}$ of aqueous iron(III) chloride. Both solutions had a concentration of $1.0 \mathrm{~mol} / \mathrm{dm}^{3}$. After each addition, the mixture was stirred, centrifuged and the height of the precipitate of iron(III) hydroxide was measured. The results are shown on the following graph.

(i) Complete the ionic equation for the reaction.

$$
\begin{equation*}
\mathrm{Fe}^{3+}+\ldots . . \mathrm{OH}^{-} \rightarrow \tag{1}
\end{equation*}
$$

(ii) On the same grid, sketch the graph that would have been obtained if iron(II) chloride had been used instead of iron(III) chloride?
(iii) If aluminium chloride had been used instead of iron(III) chloride, the shape of the graph would be different. How are the shapes of these two graphs different and why?
difference in shape
\qquad
reason for difference \qquad

5 (a) Copper has the structure of a typical metal. It has a lattice of positive ions and a "sea" of mobile electrons. The lattice can accommodate ions of a different metal.

Give a different use of copper that depends on each of the following.
(i) the ability of the ions in the lattice to move past each other
\qquad
(ii) the presence of mobile electrons
\qquad
(iii) the ability to accommodate ions of a different metal in the lattice
\qquad
(b) Aqueous copper(II) sulphate solution can be electrolysed using carbon electrodes. The ions present in the solution are as follows.

$$
\mathrm{Cu}^{2+}(\mathrm{aq}), \quad \mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}), \quad \mathrm{H}^{+}(\mathrm{aq}), \quad \mathrm{OH}^{-}(\mathrm{aq})
$$

(i) Write an ionic equation for the reaction at the negative electrode (cathode).
(ii) A colourless gas was given off at the positive electrode (anode) and the solution changes from blue to colourless.

Explain these observations.
\qquad
\qquad
(c) Aqueous copper(II) sulphate can be electrolysed using copper electrodes. The reaction at the negative electrode is the same but the positive electrode becomes smaller and the solution remains blue.
(i) Write a word equation for the reaction at the positive electrode.
\qquad
(ii) Explain why the colour of the solution does not change.
\qquad
\qquad
(iii) What is the large scale use of this electrolysis?

6 In 2002, Swedish scientists found high levels of acrylamide in starchy foods that had been cooked above $120^{\circ} \mathrm{C}$. Acrylamide, which is thought to be a risk to human health, has the following structure.

(a) (i) It readily polymerises to polyacrylamide. Draw the structure of this polymer.
(ii) Starch is formed by polymerisation. It has a structure of the type shown below. Name the monomer.

(iii) What are the differences between these two polymerisation reactions, one forming polyacrylamide and the other starch?
\qquad
(b) Acrylamide hydrolyses to form acrylic acid and ammonium ions.
(i) Describe the test for the ammonium ion.
test \qquad
\qquad
result
(ii) Given an aqueous solution, concentration $0.1 \mathrm{~mol}^{\left(/ \mathrm{dm}^{3}\right.}$, how could you show that acrylic acid is a weak acid.
\qquad
(c) The structural formula of acrylic acid is shown below. It forms compounds called acrylates.

(i) Acrylic acid reacts with ethanol to form the following compound.

Deduce the name of this compound. What type of organic compound is it? name
type of compound

(ii) Acrylic acid is an unsaturated compound. It will react with bromine. Describe the colour change and draw the structural formula of the product of this addition reaction.
colour change
structural formula of product

7 Chemists use the concept of the mole to calculate the amounts of chemicals involved in a reaction.
(a) Define mole.
\qquad
(b) 3.0 g of magnesium was added to 12.0 g of ethanoic acid.
$\mathrm{Mg}+2 \mathrm{CH}_{3} \mathrm{COOH} \rightarrow\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Mg}+\mathrm{H}_{2}$
The mass of one mole of Mg is 24 g .
The mass of one mole of $\mathrm{CH}_{3} \mathrm{COOH}$ is 60 g .
(i) Which one, magnesium or ethanoic acid, is in excess? You must show your reasoning.
(ii) How many moles of hydrogen were formed?
\qquad
(iii) Calculate the volume of hydrogen formed, measured at r.t.p.
\qquad
(c) In an experiment, $25.0 \mathrm{~cm}^{3}$ of aqueous sodium hydroxide, $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$, was neutralised by $20.0 \mathrm{~cm}^{3}$ of aqueous oxalic acid, $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$.

$$
2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

Calculate the concentration of the oxalic acid in $\mathrm{mol} / \mathrm{dm}^{3}$.
(i) Calculate the number of moles of NaOH in $25.0 \mathrm{~cm}^{3}$ of $0.4 \mathrm{~mol} / \mathrm{dm}^{3}$ solution.
\qquad
(ii) Use your answer to (i) and the mole ratio in the equation to find out the number of moles of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ in $20 \mathrm{~cm}^{3}$ of solution.
\qquad
(iii) Calculate the concentration, $\mathrm{mol} / \mathrm{dm}^{3}$, of the aqueous oxalic acid.
\qquad
DATA SHEET
The Periodic Table of the Elements

The volume of one mole of any gas is $24 \mathrm{dm}^{3}$ at room temperature and pressure (r.t.p.).

