## UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY 0620/03

Paper 3

May/June 2004

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

## **READ THESE INSTRUCTIONS FIRST**

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid. You may use a calculator.

Answer all questions.

The number of marks is given in brackets [ ] at the end of each question or part question. A copy of the Periodic Table is printed on page 12.

If you have been given a label, look at the details. If any details are incorrect or missing, please fill in your correct details in the space given at the top of this page.

Stick your personal label here, if provided.

| For Examir | ier's Use |
|------------|-----------|
| 1          |           |
| 2          |           |
| 3          |           |
| 4          |           |
| 5          |           |
| 6          |           |
| 7          |           |
| Total      |           |

This document consists of 12 printed pages.

|           | reported from America that a turbine engine, the size of a button, might replans. The engine would be built from silicon which has suitable properties for the second second by the second seco |            |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| (a) (i)   | Why are batteries a convenient source of energy?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1]        |
| (ii)      | The engine will run on a small pack of jet fuel. What other chemical is needed burn this fuel?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | l to       |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1]        |
| (b) Sili  | con has the same type of macromolecular structure as diamond.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |
| (i)       | Explain why one atom of either element can form four covalent bonds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2]        |
| (ii)      | Predict <b>two</b> physical properties of silicon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2]        |
| (iii)     | Name a different element that has a similar structure and properties to silicon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1]        |
| (c) Sili  | con is made by the carbon reduction of the macromolecular compound, silicon(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IV)        |
| (i)       | Balance the equation for the reduction of silicon(IV) oxide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            |
|           | $SiO_2$ + C $\rightarrow$ $Si$ + CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [1]        |
| (ii)      | Explain why the silicon(IV) oxide is said to be reduced.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>541</b> |
| <br>(iii) | Describe the structure of silicon(IV) oxide. You may use a diagram.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [1]        |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |
|           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2]        |

1

- 2 Sulphur is used to make sulphuric acid. In the UK, the annual production of the acid is about 2.5 million tonnes.
  - (a) The reactions in the manufacture of sulphuric acid by the Contact Process are shown below.

|       | Sulphur                                                                   | <del></del>    | Sulphur dioxide                      |
|-------|---------------------------------------------------------------------------|----------------|--------------------------------------|
|       | S                                                                         | reaction 1     | SO <sub>2</sub>                      |
| S     | ulphur dioxide + oxygen                                                   | <del>,</del>   | Sulphur trioxide                     |
|       | 2SO <sub>2</sub> + O <sub>2</sub>                                         | reaction 2     | 2SO <sub>3</sub>                     |
|       | Sulphur trioxide                                                          |                | Oleum                                |
|       | SO <sub>3</sub>                                                           | reaction 3     | $H_2S_2O_7$                          |
|       | Oleum + water                                                             |                | Sulphuric acid                       |
|       | $H_2S_2O_7$                                                               | reaction 4     | H <sub>2</sub> SO <sub>4</sub>       |
| (i)   | Give a large scale source of the                                          | element sulph  | nur.                                 |
|       |                                                                           |                | [1]                                  |
| (ii)  | State another use of sulphur dio                                          | xide.          |                                      |
|       |                                                                           |                | [1]                                  |
| (iii) | How is sulphur changed into sul                                           | phur dioxide?  |                                      |
|       |                                                                           |                | [1]                                  |
| (iv)  | Name the catalyst used in react                                           | ion <b>2</b> . |                                      |
|       |                                                                           |                | [1]                                  |
| (v)   | Reaction <b>2</b> is exothermic. Why i to increase the rate of this rever |                | ther than a higher temperature, used |
|       |                                                                           |                |                                      |
|       |                                                                           |                | [2]                                  |
| (vi)  | Write a word equation for reaction                                        | on <b>3</b> .  |                                      |
|       |                                                                           |                | [1]                                  |
| (vii) | Write a symbol equation for read                                          | ction 4.       |                                      |
|       |                                                                           |                | [1]                                  |

| ` '            | ntaining fertilisers.                                                                                                                                                                         |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)            | Name the third element that is essential for plant growth and is present in most fertilisers.                                                                                                 |
|                | [1]                                                                                                                                                                                           |
| (ii)           | Name a nitrogen-containing fertiliser that is manufactured from sulphuric acid.                                                                                                               |
|                | [1]                                                                                                                                                                                           |
| (iii)          | Rock phosphate (calcium phosphate) is obtained by mining. It reacts with concentrated sulphuric acid to form the fertiliser, superphosphate. Predict the formula of each of these phosphates. |
|                | fertiliser ions formula                                                                                                                                                                       |
|                | calcium phosphate Ca <sup>2+</sup> and PO <sub>4</sub> <sup>3-</sup>                                                                                                                          |
|                | calcium superphosphate Ca <sup>2+</sup> and H <sub>2</sub> PO <sub>4</sub> <sup>-</sup> [2]                                                                                                   |
| (iv)           |                                                                                                                                                                                               |
|                | $PO_4^{3-}$ + $2H_2SO_4$ $\rightarrow$ $H_2PO_4^-$ + $2HSO_4^-$                                                                                                                               |
|                | Explain why the phosphate ion is described as acting as a base in this reaction.                                                                                                              |
|                | [2]                                                                                                                                                                                           |
|                |                                                                                                                                                                                               |
| 3 An orga      | nic compound decomposes to form nitrogen.                                                                                                                                                     |
| $C_6$          | $_{5}H_{5}N_{2}C\mathit{l}(aq)$ $\rightarrow$ $C_{6}H_{5}C\mathit{l}(I)$ + $N_{2}(g)$                                                                                                         |
| <b>(a)</b> Exp | plain the state symbols.                                                                                                                                                                      |
| aq             |                                                                                                                                                                                               |
| I              |                                                                                                                                                                                               |
| g              | [2]                                                                                                                                                                                           |
| ` '            | aw a diagram to show the arrangement of the valency electrons in <b>one</b> molecule of ogen.                                                                                                 |

(c) The rate of this reaction can be measured using the following apparatus.



The results of this experiment are shown on the graph below.



|  | ( | i) | How c | does the | rate o | of this | reaction | vary with | ⊦time? |
|--|---|----|-------|----------|--------|---------|----------|-----------|--------|
|--|---|----|-------|----------|--------|---------|----------|-----------|--------|

[1]

(ii) Why does the rate vary?

......

- (iii) The reaction is catalysed by copper powder. Sketch the graph for the catalysed reaction on the same grid. [2]
- (iv) Why is copper powder more effective as a catalyst than a single piece of copper?

\_\_\_\_\_\_[1

- 4 (a) Insoluble compounds are made by precipitation.
  - (i) Complete the word equation for the preparation of zinc carbonate.

|   | sodium                 | zinc      |   |    |
|---|------------------------|-----------|---|----|
| + | carbonate $ ightarrow$ | carbonate | + | [0 |
|   |                        |           |   | [2 |

(ii) Complete the following symbol equation.

$$Pb(NO_3)_2$$
 +  $NaCl \rightarrow$  + [2]

(iii) Write an ionic equation for the precipitation of the insoluble salt, silver(I) chloride.

**(b)** 2.0 cm³ portions of aqueous sodium hydroxide were added to 4.0 cm³ of aqueous iron(III) chloride. Both solutions had a concentration of 1.0 mol/dm³. After each addition, the mixture was stirred, centrifuged and the height of the precipitate of iron(III) hydroxide was measured. The results are shown on the following graph.



(i) Complete the ionic equation for the reaction.

$$Fe^{3+}$$
 + ..... $OH^{-}$   $\rightarrow$  [1]

(ii) On the same grid, sketch the graph that would have been obtained if iron(II) chloride had been used instead of iron(III) chloride? [2]

|   | (111) | graph would be different. How are the shapes of these two graphs different and why?                                                                               |
|---|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |       | difference in shape                                                                                                                                               |
|   |       | reason for difference                                                                                                                                             |
|   |       | [2]                                                                                                                                                               |
| 5 |       | oper has the structure of a typical metal. It has a lattice of positive ions and a "sea" nobile electrons. The lattice can accommodate ions of a different metal. |
|   | Giv   | e a different use of copper that depends on each of the following.                                                                                                |
|   | (i)   | the ability of the ions in the lattice to move past each other                                                                                                    |
|   |       | [1]                                                                                                                                                               |
|   | (ii)  | the presence of mobile electrons                                                                                                                                  |
|   |       | [1]                                                                                                                                                               |
|   | (iii) | the ability to accommodate ions of a different metal in the lattice                                                                                               |
|   |       | [1]                                                                                                                                                               |
|   |       | belows copper(II) sulphate solution can be electrolysed using carbon electrodes. The s present in the solution are as follows.                                    |
|   |       | $Cu^{2+}(aq)$ , $SO_4^{2-}(aq)$ , $H^+(aq)$ , $OH^-(aq)$                                                                                                          |
|   | (i)   | Write an ionic equation for the reaction at the negative electrode (cathode).                                                                                     |
|   |       | [1]                                                                                                                                                               |
|   | (ii)  | A colourless gas was given off at the positive electrode (anode) and the solution changes from blue to colourless.                                                |
|   |       | Explain these observations.                                                                                                                                       |
|   |       |                                                                                                                                                                   |
|   |       | [2]                                                                                                                                                               |
|   |       |                                                                                                                                                                   |

| (c) | re   | queous copper(II) sulphate can be electrolysed using copper electrodes. T action at the negative electrode is the same but the positive electrode becomnaller and the solution remains blue. |     |
|-----|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | (i)  | Write a word equation for the reaction at the positive electrode.                                                                                                                            |     |
|     |      |                                                                                                                                                                                              | [1] |
|     | (ii) | Explain why the colour of the solution does not change.                                                                                                                                      |     |
|     |      |                                                                                                                                                                                              |     |
|     |      |                                                                                                                                                                                              | [2] |
| (   | iii) | What is the large scale use of this electrolysis?                                                                                                                                            |     |
|     |      |                                                                                                                                                                                              | [1] |

© UCLES 2004 0620/03/M/J/04

6 In 2002, Swedish scientists found high levels of acrylamide in starchy foods that had been cooked above 120 °C. Acrylamide, which is thought to be a risk to human health, has the following structure.

$$H \subset C \subset C$$

(a) (i) It readily polymerises to polyacrylamide. Draw the structure of this polymer.

[2]

(ii) Starch is formed by polymerisation. It has a structure of the type shown below. Name the monomer.



[1]

(iii) What are the differences between these two polymerisation reactions, one forming polyacrylamide and the other starch?

[2]

(b) Acrylamide hydrolyses to form acrylic acid and ammonium ions.

(i) Describe the test for the ammonium ion.

test

result [2]

(ii) Given an aqueous solution, concentration 0.1 mol / dm³, how could you show that acrylic acid is a weak acid.

[2]

For Examiner's Use

(c) The structural formula of acrylic acid is shown below. It forms compounds called acrylates.

$$H$$
  $C = C$   $H$ 

(i) Acrylic acid reacts with ethanol to form the following compound.

$$\begin{array}{c} H \\ \\ C = C \\ \\ H \end{array}$$

|      | Deduce the name of this compound. What type of organic compound is it?                                                                                                    |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | name                                                                                                                                                                      |
|      | type of compound [2]                                                                                                                                                      |
| (ii) | Acrylic acid is an unsaturated compound. It will react with bromine. Describe the colour change and draw the structural formula of the product of this addition reaction. |
|      | colour change                                                                                                                                                             |
|      | structural formula of product                                                                                                                                             |

[2]

| reaction       | n.                                                                                                                                                           |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) De         | fine mole.                                                                                                                                                   |
|                | [1]                                                                                                                                                          |
| <b>(b)</b> 3.0 | g of magnesium was added to 12.0 g of ethanoic acid.                                                                                                         |
| Mg             | + $2CH_3COOH \rightarrow (CH_3COO)_2Mg + H_2$                                                                                                                |
| Th             | e mass of one mole of Mg is 24 g.                                                                                                                            |
| Th             | e mass of one mole of CH₃COOH is 60 g.                                                                                                                       |
| (i)            | Which one, magnesium or ethanoic acid, is in excess? You must show your reasoning.                                                                           |
|                |                                                                                                                                                              |
|                | [3]                                                                                                                                                          |
| (ii)           | How many moles of hydrogen were formed?                                                                                                                      |
| (11)           |                                                                                                                                                              |
|                | [1]                                                                                                                                                          |
| (iii)          | Calculate the volume of hydrogen formed, measured at r.t.p.                                                                                                  |
|                | [2]                                                                                                                                                          |
|                | an experiment, $25.0\text{cm}^3$ of aqueous sodium hydroxide, $0.4\text{mol/dm}^3$ , was neutralised $20.0\text{cm}^3$ of aqueous oxalic acid, $H_2C_2O_4$ . |
|                | $2NaOH + H2C2O4 \rightarrow Na2C2O4 + 2H2O$                                                                                                                  |
| Ca             | Iculate the concentration of the oxalic acid in mol/dm <sup>3</sup> .                                                                                        |
| (i)            | Calculate the number of moles of NaOH in 25.0 cm <sup>3</sup> of 0.4 mol/dm <sup>3</sup> solution.                                                           |
|                | [1]                                                                                                                                                          |
| (ii)           | Use your answer to (i) and the mole ratio in the equation to find out the number of moles of $H_2C_2O_4$ in 20 cm <sup>3</sup> of solution.                  |
|                | [1]                                                                                                                                                          |
| (iii)          | Calculate the concentration, mol/dm³, of the aqueous oxalic acid.                                                                                            |
|                | [2]                                                                                                                                                          |

DATA SHEET
The Periodic Table of the Elements

|       |          |                    |                           |                                     |                              |                                  |                                           | ]                         |                                                    |
|-------|----------|--------------------|---------------------------|-------------------------------------|------------------------------|----------------------------------|-------------------------------------------|---------------------------|----------------------------------------------------|
|       | 0        | 4 <b>He</b> Helium | 20<br><b>Neo</b> n 10     | 40<br><b>Ar</b><br>Argon            | 84 <b>X</b>                  | 36<br>131<br><b>Xe</b>           | 86                                        |                           | 175<br><b>Lu</b><br>Lutetium                       |
|       | II/      |                    | 19 <b>T</b> Fluorine      | 35.5 <b>C1</b> Chlorine             |                              | 127 I                            | At Astatine 85                            |                           | 173 Yb                                             |
|       | M        |                    | 16<br>O<br>Oxygen<br>8    | 32<br><b>S</b><br>Sulphur           | 79<br><b>Se</b><br>Selenium  | 128<br><b>Te</b>                 |                                           |                           | 169<br><b>Tm</b><br>Thulium                        |
|       | ^        |                    | 14 <b>N</b> itrogen 7     | 31<br>Phosphorus                    | 75<br><b>AS</b><br>rsenic    |                                  | 51<br>209<br><b>Bi</b><br>Bismuth         |                           | 167<br><b>Er</b><br>Erbium                         |
|       | <u>N</u> |                    | 12<br><b>C</b><br>Carbon  | 28<br><b>Si</b><br>Silicon          | 73<br><b>Ge</b><br>Germanium | 32<br>119<br><b>Sn</b>           | 50 Pb Pb                                  |                           | 165<br><b>Ho</b><br>Holmium                        |
|       |          |                    | 11 Boron 5                | 27<br><b>A 1</b><br>Aluminium<br>13 |                              |                                  | 49<br>204<br><b>T t</b><br>Thallium<br>81 |                           | 162<br><b>Dy</b><br>Dysprosium                     |
|       |          |                    |                           |                                     | 65<br>Zn<br>Zinc             | 30<br>112<br><b>Cd</b>           | 48 201 <b>Hg</b> Mercury 80               |                           | 159 <b>Tb</b> Terbium                              |
|       |          |                    |                           |                                     | Copper                       | 29<br>108<br><b>Ag</b><br>Silver | 47 197 <b>Au</b> Gold                     |                           | 157<br><b>Gd</b><br>Gadolinium                     |
| Group |          |                    |                           |                                     | 59<br>Nickel                 | 106 <b>Pd</b> Palladium          | 46<br>195<br><b>Pt</b><br>Platinum<br>78  |                           | 152<br><b>Eu</b><br>Europium                       |
| Gro   |          |                    |                           |                                     | 59<br>Cobalt                 | 103<br><b>Rh</b>                 | 45<br>192<br><b>Ir</b><br>Iridium         |                           | 150<br><b>Sm</b><br>Samarium                       |
|       |          | T Hydrogen         |                           |                                     | 56<br><b>F.e.</b><br>Iron    | 101<br><b>Ru</b>                 | 44<br>190<br><b>Os</b><br>Osmium<br>76    |                           | <b>Pm</b><br>Promethium                            |
|       |          |                    |                           |                                     | 55<br>Mn<br>Manganese        | Technotium                       | 186 <b>Re</b> Rhenium 75                  |                           | 144<br><b>Nadymium</b>                             |
|       |          |                    |                           |                                     | 52<br><b>Ç</b><br>romium     | 96<br><b>Mo</b>                  | 184 <b>W</b> Tungsten 74                  |                           | 141 Pr                                             |
|       |          |                    |                           |                                     | 51<br><b>V</b>               | 93 <b>Nb</b>                     |                                           |                           | 140<br><b>Ce</b>                                   |
|       |          |                    |                           |                                     | 48                           | 91 <b>Zr</b>                     | 40<br>178<br><b>Hf</b><br>Hafrium         |                           |                                                    |
|       |          |                    |                           |                                     | 45<br><b>Sc</b><br>Scandium  | 89 <b>×</b>                      | l c                                       | 227 <b>Ac</b> Actinium 89 | series<br>aries                                    |
|       |          |                    | 9 <b>Be</b> Beryllium     | 24 <b>Mg</b> Magnesium              | 40<br><b>Ca</b><br>Calcium   | 20<br>88<br><b>Sr</b>            | 38<br>137<br><b>Ba</b><br>Barium<br>56    | 226 <b>Ra</b> Radium 88   | '58-71 Lanthanoid seri<br>90-103 Actinoid series   |
|       | -        |                    | 7<br><b>Li</b><br>Lithium | 23<br><b>Na</b><br>Sodium           | 39<br><b>K</b><br>Potassium  | 85 <b>Rb</b> Pukiding            | 37<br>133<br><b>Cs</b><br>Caesium<br>55   | <b>Fr</b> Francium 87     | *58-71 Lanthanoid series<br>90-103 Actinoid series |
|       |          |                    |                           |                                     |                              |                                  |                                           |                           | -                                                  |

| 175 <b>Lu</b> Lutetium 71              | Lr<br>Lawrenciun                 |
|----------------------------------------|----------------------------------|
| 173 <b>Yb</b> Ytterbium 70             | Nobelium                         |
| 169<br><b>Tm</b><br>Thullum            | Md<br>Mendelevium<br>101         |
| 167<br><b>Er</b><br>Erbium<br>68       | Fm<br>Fermium<br>100             |
| 165<br><b>Ho</b><br>Holmium<br>67      | <b>ES</b><br>Einsteinium<br>99   |
| 162 <b>Dy</b> Dysprosium 66            | Cf<br>Californium<br>98          |
| 159 <b>Tb</b> Terbium 65               | <b>BK</b> Berkelium 97           |
| Gd Gadolinium 64                       | Cm<br>Curium                     |
| 152 <b>Eu</b> Europium 63              | Am<br>Americium<br>95            |
| Samarium 62                            | <b>Pu</b> Plutonium              |
| Pm<br>Promethium<br>61                 | Neptunium                        |
| Neodymium 60                           | 238<br><b>U</b><br>Uranium<br>92 |
| 141<br><b>Pr</b><br>Praseodymium<br>59 | Pa<br>Protactinium<br>91         |
| 140 <b>Ce</b> Cerium 58                | 232<br><b>Th</b><br>Thorium      |

The volume of one mole of any gas is 24 dm<sup>3</sup> at room temperature and pressure (r.t.p.).

b = proton (atomic) number

a = relative atomic massX = atomic symbol

Key

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES) which is itself a department of the University of Cambridge.