

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/01

CHEMISTRY

(Multiple Choice)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003 WW. Gynai	пки в	s.com

Question Number	Key	Question Number	Key
1	С	21	В
2	В	22	D
3	Α	23	Α
4	D	24	В
5	Α	25	D
6	С	26	В
7	Α	27	D
8	Α	28	D
9	В	29	D
10	С	30	В
11	В	31	D
12	D	32	D
13	С	33	Α
14	D	34	Α
15	В	35	В
16	С	36	Α
17	Α	37	Α
18	С	38	В
19	Α	39	С
20	С	40	С

TOTAL 40

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/02

CHEMISTRY

(Core Paper 2)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003 W. Gylla		S.COM

1	(a)	(i) (ii) (iii) (iv) (v) (v)	Fe/Cu ALLOW Zn C/N/S/F/C1/Br O/S C Li/Na/K ALLOW F CU/Zn/Br/Kr	[1] [1] [1] [1] [1]
	(b)		argon - light bulbs; chlorine - kills bacteria; carbon - as lubricant; helium - in balloons	[4]
	(c)	(i) (ii) (iii)	covalent BrF ₅ ALLOW F ₅ Br ions/charged particles; NOT: particles not free to move in solid/free to move in molten/liquid state	[1] [1]
2	(a)		drop small tube in acid/loosen string/idea of mixing zinc and acid/let go of cotton ALLOW: cut the string NOT: heat (the acid) NOT: pull the string	[1]
	(b)	(i) (ii) (iii)	correct plotting including 0-0 point (_1 per omission or error) best curve drawn and to go through origin no more gas produced/reaction finished; all zinc reacted/used up	[2] [1] [2]
	(c)		graph drawn with faster initial rate and starting at 0-0; ALLOW: straight line as initial rate ends up at 55 cm ³	[2]
	(d)	(i) (ii) (iii)	2 (HC <i>l</i>) zinc chloride 136 IGNORE units	[1] [1] [1]
	(e)		substance containing only one type of atom/substance which cannot be broken down to any other substance by <u>chemical means</u> NOT 'can't be split' alone NOT is a pure substance	[1]
3	(a)	(i) (ii) (iii)	evaporation/vaporisation/boiling freezing/solidification NOT: fusion condensing/condensation/liquefaction	[1] [1]
	(b)	()	2 nd box ticked	[1]
	(c)		A; energy needed to overcome forces between molecules/idea of energy input/taking in heat	[2]
	(d)	(i) (ii) (iii)	chlorine bromine sodium chloride	[1] [1] [1]

	(e)	(i)	diffusion NOT: Brownian motion	[1]
		(ii)	ammonium chloride	[1]
		(iii)	NOT: ammonia chloride ammonia diffuses or moves faster/HCl diffuses or moves slower/ammonia has lower mass/HCl higher mass/molecules of HCl and ammonia move at different speeds NOT: ammonia evaporates faster/HCl evaporates more slowly	[1]
	(f)		neutralisation/acid base NOT: exothermic NOT: addition	[1]
	(g)	(i) (ii)	thermometer reference to the solid or melting point of the solid is needed for the mark. boiling point of water too low to get solid to melt/boiling water cannot get to	[1]
			155°C NOT: boiling point of water is only 100°C/boiling point of water too low. NOT: water boils off first	[1]
		(iii)	so that the liquid is the same temperature throughout/no hot or cold spots/so the tube is the same temperature as the thermometer/so heat can circulate in all places ALLOW: so that temperature of liquid is balanced NOT: to keep temperature constant	[1]
4	(a)	(i) (ii)	breaking down of molecules substances using heat substance which speeds up a reaction NOT: alters/changes rate of reaction NOT: speeds up and slows down rate	[1] [1]
	(b)		ethene/ethylene NOT: formula	[1]
	(c)	(i) (ii)	paraffin 4000g/4kg	[1] [1]
		(iii)	(correct unit needed) C_2H_4 ; H_2	[2]
	(d)	(i)	two units polymerised with continuation bonds at either end and hydrogen atoms drawn ALLOW: -CH ₂ CH ₂ CH ₂ CH ₂ -ALLOW: -[-CH ₂ CH ₂ -]-n	[1]
		(ii)	ALLOW: -[-CH ₂ -]- _n addition (polymerisation)	[1]
5	(a)		(sodium) hydroxide/ammonia; → green/grey green; silver nitrate; → yellow; ALLOW: lead nitrate NOT: cream	[2] [2]
			ALLOW: lead filtrate NOT: cream ALLOW: bubble chlorine → grey/black (precipitate) silver nitrate; → white: barium chloride/nitrate; → white; ALLOW: lead acetate	[2] [2]

Page 3			3	Mark Scheme Syllabus Pape	r
				IGCSE EXAMINATIONS – June 2003 WW.dynainic@2001 S.COM	
	(b)		be pre NOT: sodiur NOT: evapo	on/filtering or diagram of correct apparatus for filtration (filter paper must esent on diagram) decanting in chloride through filter paper/shown on diagram; filtrate through filter paper orate off water from sodium chloride/suitable diagram W: distilling off water	[3]
	(c)		(chem	ent atoms/elements hically) joined/bonded/combined (both points needed) ence to mixtures = 0 unless qualified enough in time frame e.g. a mixture ments which are then chemically combined)	[1]
	(d)	(i) (ii)	chlorir sodiur		[1] [1]
6	(a)		potass	sium/magnesium/aluminium	[1]
	(b)		metal	did not have electricity/did not know about electrolysis/did not know the existed did not have the right technology	[1]
	(c)		faster OR nu uraniu mediu	tion that bubbles produced rapidly or quickly/slower than magnesium but than zinc umber of bubbles produced intermediate between magnesium and zinc; um dissolved slower than magnesium but faster than zinc/dissolves at um rate etc.	[1] [1]
		(ii)		s of same element with different mass number/different number of ons/different nucleon number	[1]
		(iii)	indica ALLO NOT:	compounds/molecules with different mass number tion of use for energy – nuclear power stations/nuclear energy W: atomic/nuclear bombs curing cancer/medical uses 'for fuel'	[1]
	(d)			esium oxide W: MgO	[1]
	(e)			of mixture of (different) metals	[1]
		(ii)	corros NOT: NOT:	harder/stronger/decreased malleability/increased toughness/increased sion resistance/heat or electrical resistance increased increase in melting point cheaper improving properties	[1]
	(f)			ves oxygen from zinc oxide W: definition of reduction involving oxidation numbers/electron transfer	[1]
	(g)	(i)		sible reaction	[1]
		(ii)	76-80°	W: equilibrium %	[1]
	(h)	(i) (ii)	loses	et electronic structure of Mg (2.8.2) on diagram two electrons/loses its valence electrons = 2 Mg ²⁺ ion = 1	[1]
				electron(s) = 1 Mg ²⁺ ion by losing electrons = 2	[2]

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 80

SYLLABUS/COMPONENT: 0620/03

CHEMISTRY

(Extended Paper 3)

Page 1	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003 W.C. Cyna	1110 663 60e1	s.cogn

In the mark scheme if a word or phrase is underlined it (or an equivalent) is required for the award of the mark.

(.....) is used to denote material that is not specifically required.

OR designates alternative and independent ways of gaining the marks for the question.

or indicates different ways of gaining the same mark.

COND indicates that the award of this mark is conditional upon a previous mark being gained.

- Unusual responses which include correct Chemistry that answers the question should always be rewarded-even if they are not mentioned in the marking scheme.
- All the candidate's work must show evidence of being marked by the examiner.

1	(a)		A correct equation either CO or If not balanced but otherwise co	— · ·	[2]
	(b)	(i) (ii)	$C + O_2 \rightarrow CO_2$ NOT work (higher in furnace) no oxygen les carbon dioxide reacts with carbon	eft .	[1] [1] [1]
			OR incomplete combustion of c	arbon	[2]
			OR either equation gains both n $CO_2 + C = 2CO$ or $2C + O_2 = 2CO$		
			OR carbon dioxide reacts with carbon		[1] [1]
	(c)		limestone + sand \rightarrow slag OR calcium carbonate + silicon	(IV) oxide \rightarrow calcium silicate (+ carbon dioxide)	[2]
			For knowing that impurity is san	nd [1] ONLY	
			Accept calcium oxide and silico Accept lime	n oxide	
	(d)	(i) (ii) (iii)	Cutlery or chemical plant or wa cars or sinks or aircraft or gard nickel or chromium or molybder blow air/oxygen through carbon becomes carbon dioxide carbon dioxide escapes as gas silicon and phosphorus become calcium oxide or calcium carbor forms slag	num or niobium or titanium	[1] [1]
			•	OT blast furnace	[4]
	(e)		anode tin No cathode iron or steel tin salt or tin ions as electrolyte NOT oxide or hydroxide or carb	OT impure time onate	[1] [1] [1]

TOTAL = 16

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003 WW. Clyna	10116 9839 061	s.cogn

2	(a)	(i) (ii)	3 ignore any cha high melting or boiling hard	-	[1]
			poor conductor of elec	ctricity or heat	
			brittle Any TWO		[2]
			NOT insoluble, dull, o		
		(iii)		iond silicon, germanium ilica or silicon dioxide or silicon oxide	[1]
		(:)	or sand or silicon car	bide or named polymer	[1]
		(iv)	four around one cond looks tetrahedra	al or shows continuation	[1] [1]
				weak bonds between layers [1]	
			Accept any macromol For polymer repeat ur		
	(b)	(i)	white precipitate		[1]
	` ,	.,	COND upon a precipi		
		(ii)	dissolves in excess or blue precipitate	r forms solution	[1] [1]
		` ,	COND upon a precipi		
			does not dissolve in e	xcess	[1]
	(c)	(i)	number of moles CO ₂		
				oles of $CaCO_3$ and $MgCO_3 = 0.01$ oles of $CaCO_3 = 0.005$	[3]
		(ii)	Calculate the volume	of hydrochloric acid, 1.0 mole/dm³, needed to react with	
			one tablet. number of moles of C	aCO₃ and MgCO₃ in one tablet = 0.01	
			Expect same as answ	ver to (c)(i). NO marks to be awarded. Just mark	
			consequentially to this conseq number of m	•	
			to react with one table		[1]
			conseq volume of hy	drochloric acid, 1.0 mole/dm³, needed to react with one	
			tablet = $0.02 \text{ dm}^3 \text{ or } 2$		[1]
				TOTA	AL = 16
3	(a)	(i)	Correct equation		[2]
-	()	(-)	For giving correct form	mula of alkane and alkene [1] only	[-]
		(ii)	Accept alkene and hy chlorine	/drogen	[1]
		(,	COND light or 200°C	or heat or lead tetraethyl	
			or high temperature I ignore comment 'cata'		[1]
	(b)	(i)	same molecular form different structures or		[1] [1]
		(ii)	but-2-ene or cyclobuta	ane	[1]
			corresponding structu NOT 2-butene	ral formula	[1]
	(c)		butanol	ignore numbers	[1]
	(5)		butane	ignore numbers	[1]
			dibromobutane	ignore numbers	[1]

	(d)	(i)	propene	[1]
			CH ₃ —CH==CH ₂	[1]
		(ii)	Correct structure of repeat unit ignore point of attachment of ester group COND upon repeat unit	[1]
		(iii)	shows continuation If chain through ester group [0] out of [2] do not decay or non-biodegradable shortage of sites or amount of waste per year visual pollution	[1]
			forms methane Any TWO	[2]
		(iv)	form poisonous or toxic gases or named gas CO, HC <i>l</i> HCN NOT carbon dioxide, harmful, sulphur dioxide	[1]
				TOTAL = 18
4	(a)	(i)	Correct equation not balanced [1] ONLY $2Pb(NO_3)_2 = 2PbO + 4NO_2 + O_2$	[2]
			$Pb(NO_3)_2 = PO + 2 NO_2 + \frac{1}{2} O_2$	
		(ii)	potassium nitrate → potassium nitrite + oxygen	[1]
	(b)	(i)	close or tightly packed ordered or lattice	[1] [1]
			vibrational NOT forces	[1]
		(ii)	melting or freezing or fusion or solidification	[1]
	(c)	(i)	oxygen and nitrogen (in air) react at high temperatures (and high pressure)	[1] [1]
		(ii)	If nitrogen in fuel [0] out of [2] catalytic converter react with carbon monoxide or hydrocarbons	
			form nitrogen ANY TWO	[2]
	(d)		Add excess lead oxide to nitric acid	[1]
	(ω)		can imply excess filter NOT if residue is lead nitrate	[1]
			evaporate or heat solution	[1]
				TOTAL = 14
5	(a)		protons 2 electrons 2	
			neutrons 4	[3]
	(b)	(i) (ii)	La ³⁺ + 3e- = La hydrogen	[1] [1]
		(11)	bromine NOT Bromide	[1]
			caesium hydroxide ignore any comments about electrodes	[1]

Mark Scheme Syllabus Paper IGCSE EXAMINATIONS – June 2003/WW.dynamic@2005.COm

Page 3

(c)	metal hydroxide or hydroxide ions hydrogen	[1] [1]
(d)	correct formula 1Ba to 2C <i>1</i> charges correct 8e around the anion All three points Two points ONLY [1] If covalent [0] out [2]	[2]
(e)	alternating (positive and negative) pattern	[1] [1]
(f) (i) (ii)	barium - oxygen or ionic bond forming energy released/exothermic bond breaking energy taken in/endothermic more energy released	[1] [1] [1]

Page 4

Mark Scheme Syllabus Paper IGCSE EXAMINATIONS – June 2003/WW.dynamic@apers.com

TOTAL = 17

Total for Paper: 80

www.dynamicpapers.com

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 40

SYLLABUS/COMPONENT: 0620/05

CHEMISTRY

(Practical)

	Page 1			IGC	Mark Sc	heme	_{e 2} wyw.dyna	Syllabus Pa	aper 2111
					<u>JE EXAMINATIO</u>	<u> </u>	2000	0020	J
1				of results iment 1 Initial and final readings recorded to 1 decimal place				[1] [1]	
			Exper	iment 2	Initial and fina	_	recorded 1 decimal place	•	[1] [1]
			Result	ts comparable t	o Supervisor's	results ±	1cm ³		[2]
	(a)		red/bu	ırgundy/brown					[1]
	(b)		yellow (1) to blue/black (1) see Supervisor IGNORE green				[2]		
	(c)	(i) (ii) (iii) (iv)	not different concentrations			ersa	[1] [2] [1] [2] [1]		
	(d)		Indicator (1) reference to accuracy (1)/end-point/see more clearly not test for ${\rm I_2/I^-}$				•	[2]	
2	(0)		hubble	oo/oondonootio	o/good block			[Question tot	_
2	(a)			es/condensation				max 2	[2]
	(b)			e - colourless <u>no</u> le - green	<u>or</u> clear				[1] [1]
	(c)	(i) (ii)	limewa solution blue (escence/fizz/bu ater → milky on is blue 1) precipitate (1 deep blue (1) so)				[1] [1] [1] [2] [2]
	(d)	(i) (ii) (iii)	white	(1) precipitate ((1) precipitate (precipitate (1))		[3] [3] [1]
	(e)		zinc (1	1) sulphate (1)		re	eversed = 0		[2]
	(f)			er (1) carbonate ted (1)	(1)	reversed	= 0	max 2	[2]
								[Question tot	al: 22]
								[Total for pap	er: 40]
			Results obtained for Question 1/cm ³						
				iment 1 iment 2	1 st 16.5 8.3		6.3 8.2		

INTERNATIONAL GCSE

MARKING SCHEME

MAXIMUM MARK: 60

SYLLABUS/COMPONENT: 0620/06

CHEMISTRY

(Alternative to Practical)

1	(a)		A = mortar (1) B = stirrer/stirring rod (1) C = tripod (1) D = Bunsen Burner (1)	not thermometer	[4]
	(b)		filtration		[1]
	(c)		D or description		[1]
2	(a)		because precipitate formed/goes clo sulphur (1)/turbid	udy (1)	[2]
	(b)		reference to fair test/comparison/sar	ne depth	[1]
	(c)		sodium thiosulphate/water 1st/2nd aci	d, last	[1]
	(d)	(i) (ii)	all points correct (3), -1 for any incorsmooth line (1) label (1) line lower down (1) does not touch other line (1)	rect	[5] [2]
	(e)		times would be longer (1) because s surface area/depth (1)	olution more spread out/referenc	e to [2]
3	(a)	(i) (ii) (iii)	Table of results correct burette readings in table (3) i.e. 16.8, 17.1 and 25 Differences correctly completed (1) i.e. 8.4 Experiment 1 twice volume/more than twice as mu Solution B was 2x (1) concentration	Difference 7.6 ch of C (1) or similar	5 [4] [1] [1] [2]
		(iv)	B more concentrated than C (1 only) volume $\mathbf{A} = 33.6$ (1) cm ³ (1)/34.4cm ³ 2x iodine produced (1)		[3]
	(b)		reference to accuracy (1) indicator ($\frac{1}{2}$ max 2	1)/easier to see	[2]
4	(c)		effervescence/fizz/bubbles (1) limewater milky (1)/blue solution		[2]
	(d)	(ii)	blue (1) precipitate (1) royal/dark blue (1) solution (1)		[4]
	(e)	(i) (ii)	white (1) precipitate (1) dissolves (1) white (1) precipitate (1) dissolves (1)		[3]
	(f)		Solid D is a sulphate (1) hydrated (1))	[2]
	(g)		copper (1)/Cu ²⁺ (2)		[2]

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE EXAMINATIONS – June 2003 W. Clynai	шожжи	s.cogn

[1] 5 (a) (i) Smooth line graph result at 5 minutes (1) (ii) not on curve (1)/gas escapes, gone down [2] (b) 0.8 g [1] reference to leak/loss of gas (1) (c) : volumes lower (1) [2] 6 Known mass of beach sand (1) add excess (1) dilute hydrochloric acid (1) filter (1) wash (1) dry (1) residue and weigh sand (1) working out result (1) max 6 of 8 [6]

[Total: 60]

Grade thresholds taken for Syllabus 0620 (Chemistry) in the June 2003 examination

	maximum	minimum mark required for grade:				
	mark available A	А	С	E	F	
Component 1	40	-	26	20	17	
Component 2	80	-	52	36	27	
Component 3	80	53	31	-	-	
Component 5	40	31	24	18	14	
Component 6	60	42	32	21	15	

The threshold (minimum mark) for B is set halfway between those for Grades A and C. The threshold (minimum mark) for D is set halfway between those for Grades C and E. The threshold (minimum mark) for G is set as many marks below the F threshold as the E threshold is above it.

Grade A* does not exist at the level of an individual component.