CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2015 series

0580 MATHEMATICS

0580/43

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

	www.dynam	nicpapers	.com
Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – October/November 2015		43

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after e

FT follow through after error isw ignore subsequent working

oe or equivalent

SC Special Case

nfww not from wrong working

soi seen or implied

Q	uestion	Answer	Mark	Part marks
1	(a) (i)	3.9[0]	2	M1 for 2.6 ÷ 2
	(ii)	$\frac{13}{18}$ cao	2	B1 for any correct unsimplified fraction
	(iii)	24	3	M2 for $9 \div 0.375$ oe
				or M1 for associating 9 with $(100 - 62.5)\%$
	(b)	109 cao	3	B2 for 108.5 to 108.6 or
				M1 for $250 \times \left(1 - \frac{8}{100}\right)^{10}$ oe
2	(a) (i)	Image at (-2, 5), (1, 5), (1, 7)	2	SC1 for translation $\begin{pmatrix} -4\\ k \end{pmatrix}$ or $\begin{pmatrix} k\\ 4 \end{pmatrix}$
				or 3 correct vertices plotted but not joined
	(ii)	Image at $(2, -3)$, $(5, -3)$, $(5, -5)$	2	SC1 for a reflection in a horizontal line or in the line $x = -1$ or 3 correct vertices plotted but not joined
	(b)	Rotation	1	Alt
		180 oe	1	Enlargement SF -1 (-1 , 0)
		(-1, 0)	1	Not as column vector
	(c) (i)	Reflection	1	
		y = -x oe	1	
	(ii)	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	2	SC1 for a correct row or column

Page 3	Mark Scheme	S	/llabus	Paper
	Cambridge IGCSE – October/November 2015		0580	43

3	(a)	43 200	3	M2 for $0.5 \times (35 + 25) \times 12 \times 120$ oe or M1 for $0.5 \times (35 + 25) \times 12$ oe
	(b) (i)	0.5 × (25 + 30) × 6 ×120 [= 19800]	M2	Dep on a valid method for obtaining the width of 30 cm B1 for $0.5 \times (25 + 35)$ oe
	(ii)	45.8 or 45.83	1FT	FT for $\frac{19800}{their(a)} \times 100$
	(c)	1 hr 39 min	4	B3 for 1.65 [h] or 99 mins or $\frac{33}{20}$ or M2 for $\frac{19800}{12 \times 1000}$ oe or M1 for $\frac{19800}{12}$ or $\frac{19800}{1000}$ or 12×1000 If zero scored then SC1 for figs 165 and B1 for converting their time (in hours) into
	(d)	12.8 or 12.80 to 12.81	3	hours and minutes M2 for $\sqrt[3]{\frac{19800}{3\pi}}$ or M1 for $\pi r^2 \ 3r = 19800$
	(e)	21[.0]	2	M1 for $\frac{19800}{1000} + 1.2$

Pa	ge 4	Mark Sch	Syllabus	Paper		
	J -		IGCSE – October/November 2015			43
·	ł					
4	(a)	-1.5, 0.5	2	B1 , B1		
	(b)	Correct curve	5	B3 FT for 10 or 11 points or B2FT for 8 or 9 points or B1FT for 6 or 7 points and B1 independent for two b		
SC4 for correct curve but branc				branches join	ned	
	(c)	1.25 to 1.35	1			
	(d)	-1	1			
	(e) (i)	2-x	1			
	(ii)	Ruled line with gradient –1 through (0, 2) and fit for purpose	2FT 1	(0, 2), but not $y = 2$ FT their $y = mx + c$ from (e)(i), if $m \neq 0$ SC1FT for ruled line either with correct gradient or through (0, c), but not $y = c$		
5	(a)	2180 or 2181 nfww	4	M2 for $680^2 + 2380^2 - 2 \times 680 \times$ or M1 for correct implicit co A1 for 4760 000 or 4758	osine formula	
	(b)	78.7 or 78.71	3	M2 for $\frac{2380 \sin 40}{1560}$ or M1 for $\frac{1560}{\sin 40} = \frac{2380}{\sin M}$	oe	
	(c)	309 or 308.7	2FT	FT 230 + <i>their</i> (b) B1FT 50 + <i>their</i> (b) for 129 or 128.7 [i.e. fc	or C from M	
	(d) (i)	23 39 oe	1			
	(ii)	650	2	M1 for 1560 ÷ journey tir	ne	

Pa	ige 5	Mark Sch	eme	www.dynan	Syllabus	Paper
	.go o	Cambridge IGCSE – Octo		vember 2015	0580	43
	I					
6	(a)	101.5625 or 102 or 101.5 to 101.6 nfww	4	 M1 for 55, 90, 110, 160 s M1 for Σ<i>fm</i> with frequent on a boundary of a correc 2750, 2700, 4400, 6400 M1 dep on 2nd M for ÷ 	cies and each t interval	n <i>m</i> in or
	(b)	Correct histogram drawn with correct widths and heights 1, 1.5 and 2 (no gaps)	3	B1 for each correct block If zero scored, SC1 for co frequency densities		or
	(c)	$\frac{40}{160}$ oe	1			
	(d) (i)	(i) $\frac{1560}{25440}$ oe 2 M1 for $\frac{40}{160} \times \frac{39}{159}$				
	(ii)	$\frac{4000}{25440}$ oe	3	M2 for $\frac{40}{160} \times \frac{50}{159} + \frac{50}{160}$ or M1 for one of these produced		
7	(a)	83 nfww	4	B3 for $17x = 1411$ or $17x$ in form $ax = b$ or final ans or B2 for $6x + 11x - 55 = 13$ or $6x + 11x - [0.]$ 55 = 13[or M1 for $6x + 11(x - [0.0]5)$	swer of 0.83 56 oe [.]56	
	(b)	$\frac{1}{3}$ oe nfww	4	M1 for $y(y+3)$ oe or $\frac{1}{2}$ and B2 for $2y^2 + 6y = 2y^2 + 2y + y$ or B1 for $(2y+1)(y+1) = 2$	+1 oe or bet	ter

Page 6	Mark Sch	eme	www.dynam	Syllabus	Paper
l ugo o	Cambridge IGCSE – Octo		vember 2015	0580	43
(c)	25 nfww	4	M1 for $\frac{4[.]80}{w-1}$ or $\frac{7[.]80}{2w-1}$ M1 for $\frac{4[.]80}{w-1} = \frac{7[.]80}{2w-11}$ M1 for $480(2w-11) = 78$ or ALT M1 for $n(w-1) = 4[.]80$ or M1 for $2wn - 11n = 7[.]80$ 2wn - 2n = 9[.]60 M1 for $9n = 180$ oe or be or ALT M1 for $n(w-1) = 4[.]80$ or M1 for $9n = 180$ oe or be M1 for $9n = 180$ oe or be M1 for $9n = 180$ oe or be	$\frac{1}{80(w-1)} = \frac{1}{80(w-1)} = \frac{1}{80(w-1)$	
(d) (i)	$\frac{1}{2}u(3u-2) = 2.5$ One further correct step leading to $3u^2 - 2u - 5 = 0$ with no errors	M1 A1	First step must involve $\frac{1}{2}$		
(ii)	(3u - 5)(u + 1)	2	SC1 for $(3u + a)(u + b)$ where $ab = -5$ or $a + 3b =$	a - 2 [a, b interval	egers]
(iii)	29.1 or 29.05	3	M2 for tan = $\frac{their \frac{5}{3}}{3 \times their \frac{5}{3}}$ - or M1 for substituting <i>their</i> [<i>u</i> and] 3 <i>u</i> - 2		e of <i>u</i> into
8 (a) (i)	Angle A is common to both triangles oe ADB = ABC	1	Accept $DAB = CAB$ oe		
	ADb = AbC Third angle of triangles equal oe	1dep	Dep on previous mark		
(ii)	Similar	1			
(iii)	8.25	2	2 M1 for $\frac{16}{12} = \frac{11}{BD}$ oe or better		
(b) (i)	38	1			
(ii)	38	1			
(iii)	78	1			
(iv)	26	1			

Pag	le 7	Mark Scheme Syllabus Paper					
		Cambridge IGCSE – October/November 2015 058					
	• 	• • • • • • • • • • • • • • • • • • •					
	(c)	36 nfww	5	B4 for an equation in <i>m</i> that simplifies to $5m = 180$ or B1 for each of 3 of the listed angles expressed in terms of <i>m</i> , in it's simplest form, stated or labelled on diagram Angle $PQO = m$ Angle $PQO = m$ Angle $QOR = m$ Angle $OQR = 2m$ Angle $PQR = 3m$ or $180 - 2m$ or $90 + \frac{m}{2}$ Angle $POR = 180 - m$ or $4m$ or $360 - 6m$ Reflex angle $POR = 360 - 4m$ or $6m$ or $180 + m$			
9	(a)	8	1			1100 · m	
	(b)	3	2	B1 for $[g(0.5) =]2$ soi or M1 for $2\left(\frac{1}{x}\right) - 1$ or bette	r		
	(c)	$\frac{x+1}{2}$ final answer	2	M1 for $x = 2y - 1$ or $y + 1$ or $\frac{y}{2} = x - \frac{1}{2}$	=2x or bett	er	
	(d)	4x - 3	2	M1 for $2(2x - 1) - 1$			
	(e)	$4x^2 - 4x + 7$	2	B1 for $[(2x-1)^2] = 4x^2$.	-2x-2x+1		
	(f)	x	1				
	(g)	$g^{-1}(x) = g(x)$	1				
	(h)	fh(x)	1				

Page 8		Mark	Scheme	www.uynan	Syllabus	Paper
1 490 0		Cambridge IGCSE –	0580	43		
10	Α	-13, -20	1			
		-7n + 22 oe	2	SC1 for $-7n + k$ or $kn + 2$	2 oe	
	В	$\frac{9}{22}, \frac{10}{23}$	1			
		$\frac{n+4}{n+17}$ oe	2	B1 for $n + 4$ oe or $n + 17$ wrong position	oe seen, but r	not in
	С	26, 37	1			
		$n^2 + 1$ oe	1			
	D	162, 486	1			
		$2 \times 3^{n-1}$ oe	2	SC1 for $k \times 3^{n+p}$ [k, p integration of the second s	egers]	
				Accept $2 \times \frac{3^n}{3}$		