CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the October/November 2014 series

0580 MATHEMATICS

0580/21

Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

www.dynamicpapers.com

Page 2	Mark Scheme	Sylla	bus	Paper
	Cambridge IGCSE – October/November 2014	058	30	21

Abbreviations

cao	correct answer only
-----	---------------------

- dep dependent
- FT follow through after error
- isw ignore subsequent working
- oe or equivalent
- SC Special Case
- nfww not from wrong working
- soi seen or implied

	Qu.	Answers	Mark	Part Marks
1		8.1722 cao	2	B1 for 8.17 or 8.172 or 8.1721 or 8.17215
2		3 3.14 π 3.142 $\frac{22}{7}$	2	B1 for 3.141[5] to 3.1416 and 3.1428 to 3.1429 or 3.143 seen or SC1 for 4 in correct order
3	(a)	E B A cao	1	
	(b)	Z cao	1	
4	(a)	-3	1	
	(b)	4	1FT	FT their numerical mode
5		$\frac{\frac{3}{12} \text{ and } \frac{2}{12}}{\frac{5}{12} \text{ cao}}$	M1 A1	Equivalent denominators can be used, working must be shown.
6	(a)	15.1 cao	1	
	(b)	20 cao	1	
7		2.5[0] or 2.501 nfww	3	M2 for $2.1 \times (1 + \frac{6}{100})^3$ oe or M1 for $2.1 \times (1 + \frac{6}{100})^n$ oe where $n \ge 2$ or for figs $21 \times (1 + \frac{6}{100})^3$ oe
8		0.29 cao	3	M2 for $30 - (24 \times 1.2378)$ or $(24 \times 1.2378) - 30$ or M1 for 24×1.2378
9	(a)	280	1	
	(b)	5×10^{6}	2	B1 for 5 000 000 oe or B1 for answer $k \times 10^6$ or 5×10^k

www.dynamicpapers.com

	www.dynamicpapers.com					
Page 3	Mark Scheme			Syllabus	Paper	
	Cambridge IGCSE – October/November 2014			0580	21	
10	3.75 oe	3	M2 for $3 \times 5 = 7x - 3x$ oe or M1 for $3(x+5) = 7x$ or $x+5 = \frac{7}{3}x$ or $1 + \frac{5}{x} = \frac{7}{3}$ or better			
11 (a)	x ⁶	1				
(b)	$\frac{x^2}{3}$	2	B1 for answer kx^2 or $\frac{x^k}{3}$ or $\frac{1}{3}$			
12	5 - 5 nfww	3	M1 for correctly eliminating one variable A1 for $x = 5$ A1 for $y = -5$ If zero scored SC1 for correct substitution and evaluation to find the other variable			
13	[±] 8 nfww	3	M1 for $y = k\sqrt{x+5}$ A1 for $k = [\pm] 2$ or M2 for $\frac{4}{\sqrt{-1+5}} = \frac{1}{\sqrt{10}}$	$\frac{y}{11+5}$ oe		
14	$\begin{pmatrix} 4 & 16 \\ 2 & 8 \end{pmatrix}$	3	M2 for $\begin{pmatrix} 12 & 48 \\ 6 & 24 \end{pmatrix}$ and or M1 for $\begin{pmatrix} 12 & 48 \\ 6 & 24 \end{pmatrix}$ o		$\binom{32}{16}$	
15 (a) (i)		2	B2 for correct ruled be or B1 for correct bised arcs			
(ii)		2	B2 for correct ruled be or B1 for correct bised arcs			
(b)		1	correct shading			
16	142 or 142.0	5	B1 for <i>CBD</i> = 30 M2 for $[\sin D =]^{6 \times \sin D}$ or M1 for $\frac{6}{\sin D} = \frac{1}{\sin D}$ A1 for $[D =]$ 22 or 22 B1FT for 90 + (<i>their3</i>) correctly for their final or for 360 - 90 - <i>their</i> correctly for their final	$\frac{8}{n(their30)} \circ \frac{1}{2}$ a) or 22.02. b) or 22.02. c) or 22.02.	e) evaluated	

www.dynamicpapers.com

F	Page 4	Mark Scheme			Syllabus	Paper	
		Cambridge IGCSE – October	/Noveml	ber 2014	0580	21	
			I	1			
17		890 or 890.1 to 890.2	5	M4 for $\frac{1}{2} \times \left(\frac{4}{3} \times \pi \times 5^3\right) + \pi \times 5^2 \times 8$			
				or M3 for $\frac{1}{2} \times \left(\frac{4}{3} \times \pi \times 5^3\right)$ and $\pi \times 5^2 \times 8$			
				or M2 for $\frac{1}{2} \times \left(\frac{4}{3} \times \pi \times 5^3\right)$ or $\pi \times 5^2 \times 8$			
				or M1 for $\frac{4}{3} \times \pi \times 5^3$			
18	(a)	0.6 0.2 0.8 in correct places	2		B1 for 0.6 in correct place B1 for 0.2 and 0.8 in correct places		
	(b)	0.52 oe nfww	3	M2FT for $1 - (their 0.6 \times their 0.8)$ oe or M1FT for a correct product from <i>their</i> tree in (a)			
19	(a)	CBA and BDA are equilateral oe	1				
	(b)	67[.0] or 67.02 to 67.03	2	M1 for $\frac{120}{360} \times \pi \times 8^2$	oe		
	(c) (i)	39.3 or 39.28 to 39.33	3	M2FT for <i>their</i> (b) $-\frac{1}{2} \times 8^2 \times \sin 120$ oe or M1 for $\frac{1}{2} \times 8^2 \times \sin 120$ oe			
	(ii)	78.6 or 78.7 or 78.56 to 78.66	1FT	FT 2 × <i>their</i> (c)(i) correctly evaluated			
20	(a)	0.4 or $\frac{2}{5}$	2	B1 for [f(2) =] 4			
				or M1 for $\frac{2}{(3x-2)}$	$\frac{1}{1}$ or better		
	(b)	$-0.8 \text{ or } -\frac{4}{5}$	2	M1 for $2 = 10(x+1)$	M1 for $2 = 10(x+1)$ or better		
	(c)	3x-6 or $3(x-2)$ nfww	3	M2 for $3(2x)-2-(3(x+2)-2)$ or M1 for $[f(2x)=]3(2x)-2$ or $[f(x+2)]=3(x+2)-2$			