UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

0580 MATHEMATICS

0580/42

Paper 4 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	V	ww.dynamicpa	pers.com
Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010	0580	42

Abbreviations

cao	correct answer only
cso	correct solution only
dep	dependent
ft	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
WWW	without wrong working
art	anything rounding to

soi seen or implied

Qu.	Answers	Mark	Part Marks
1	(a) 432	2	M1 for $756 \div 7 \times 4$ oe
	(b) (i) 8970	2	M1 for 7800 × 1.15 oe After 0 scored, SC1 for 1170 as answer
	(ii) $\frac{\text{their }9867(-7800)}{7800}$ (×100) or 1.15 × 1.10	M2	Their 9867 is their (b)(i) × 1.1 Implied by 1.265 or 0.265 or 126.5 or M1 for their (b)(i) × 1.10 (9867 seen or 2067 seen)
	26.5 % cao	A1	www3
	(c) 8100	3	M2 for 9720 ÷ 1.2 oe or M1 for 120% = 9720 oe
	(d) 562.43 or 562 or 562.4(0) or 562.432	3	M2 for 500×1.04^3 or alt complete method or M1 for 1.04^2 or 1.04^3 oe soi e.g. \$540.80 or 562.(43) seen in working
2	(a) (i) 11 (ii) 22	1 1	
	(b) $\frac{x+1}{4}$ of final answer	2	M1 for $x + 1 = 4y$ or $\frac{g(x) + 1}{4}$ or $\frac{y + 1}{4}$
	(c) $16x^2 - 8x + 7$ final answer	3	M1 for $6 + (4x - 1)^2$ and B1 for $16x^2 - 4x - 4x + 1$ or better seen
	(d) 0.5 or ¹ / ₂ www	3	M2 for $16x - 4 - 1 = 3$ or better or M1 for $4(4x - 1) - 1$ (= 3) Alt method M2 allow $g^{-1}g^{-1}(3)$ complete method or M1 for $g(x) = g^{-1}(3)$

		WW	w.dynamicpa	pers.com
Page 3	Mark Scheme: Teachers' version		Syllabus	Paper
	IGCSE – October/November 2010		0580	42

3	(a) (i) 63 to 63.5 (ii) 50 to 50.5 (iii) 21.5 to 22.5	1 1 1	
	(b) 46	2	B1 for 34 seen (could be on graph)
	(c) (i) 12, 14 (ii) $\{35 \times 8 + 45 \times \text{their } 12 + 55 \times 14 + 55 \}$	1,1	
	(ii) $(55 \times 6 + 45 \times 101 + 12 + 55 \times 14 + 65 \times 22 + 75 \times 16i + 14 + 85 \times 10)$ \div their 80 (or 80)	M3	M1 for mid-values soi (allow 1 error/omit) and M1 for use of $\sum fx$ with x in correct
	61.5 cao	A1	boundary including both ends (at least 4 products) (4920 seen implies M2) and M1 depend on 2 nd M for dividing by their 80 (or 80) (not 54 or less) www4
4		2	M1 for $1/3\pi \times 4^2 \times 13$
4	 (a) (i) 218 (217.7 to 218) (ii) 501 (500.7 to 501.4) (iii) 99 	2 1ft 2ft	ft their (a) $\times 2.3$ ft their (a) $\times 2.3$ ft 50 000 \div their (a)(ii) and truncated to whole number M1 for 50 000 \div their (a)(ii) oe or answers 99.8 or 100
	(b) their (a)(i) × $\left(\frac{32.5}{13}\right)^3$ oe	M2	or $1/3\pi \times 10^2 \times 32.5$ or M1 for $(32.5 \div 13)^3$ (=15.625) seen or $(13 \div 32.5)^3$ (= 0.064) seen
	3400 or 3410 (3401 to 3407)	A1	www3
	(c) $(r^2 =) 550 \div 12\pi$	M2	(14.58 to 14.6) or M1 for $12\pi r^2 = 550$ or better
	3.82 (3.818 to 3.821)	A1	$\frac{1}{2} \frac{1}{2} \frac{1}$

www.dvnamicpapers.com

						w.dynamicpa	
Page 4			Mark Scheme: Teachers' version		Syllabus	Paper	
			IGCSE – October/Nov	ember	2010	0580	42
	_				1		
5	(a) ($x^{2} + (x + 7)^{2} = 17^{2}$ oe $x^{2} + x^{2} + 7x + 7x + 49 = 17^{2}$ or better	B1 B1	Must be seen		
	($2x^{2} + 14x - 240 = 0$ $x^{2} + 7x - 120 = 0$ (x + 15)(x - 8)	E1 2	With no errors M1 for $(x + a)$ and $a \times b = -$	n – correct 3 terms s seen y(x + b) where a ar 120 or $a + b = 7$ ns after factors giv	nd <i>b</i> are integers
		(iii) (iv)	–15 and 8 15	1ft 1ft	Correct or ft d Correct or ft th	ep on at least M1 heir positive root f and negative root g	in (ii) rom (ii) + 7 dep
	(b) ($3x(2x-1) = (2x+3)^2$ oe	M1	before simplif	$4x^2 + 12x + 9$ mu ication	st see equation
			$4x^2 + 6x + 6x + 9$ or better seen	B1	Indep		
			$6x^2 - 3x = 4x^2 + 12x + 9 \text{ oe}$ $2x^2 - 15x - 9 = 0$	E1	With no errors expanded	s seen and both set	s of brackets
	(ii)	$\frac{()15\pm\sqrt{((-)15)^2-4(2)(-9)}}{2(2)}$ oe	1 1	better (297)	B1 for $((-)15)^2 - \sqrt{a}$	4(2)(-9) or
						$\frac{\sqrt{q}}{r}$ or $\frac{p - \sqrt{q}}{r}$, and 2(2) or better	
	(8.06 and -0.56 cao 76.5 (76.46 to 76.48)	1, 1 1ft		or –0.558 and 8. sitive root to (b)(i	
6	(a) ($5480^2 + 3300^2 - 2 \times 5480 \times 3300 \times \cos 165$	M2	(75 856 005) I	M1 for implicit ve	rsion
			8709.5	E2	If E0, A1 for 7	75800000 to 75900	0000
	(ii)	$(\sin L =) \frac{\sin 165}{8710} \times 3300$	M2	M1 for $\frac{\sin L}{3300}$	$=\frac{\sin 165}{8710}$ oe (allow	w 8709.5.)
			(0.09806)	4.1	M2 for explicit (allow 5.6 to 5	ine rule using 871 it form or M1 for 5 5.63 for A mark)	
			5.6 (5.62 to 5.63)	A1	www3		
	(b) 2	22 3:	5 or 10 35 pm	2		pm or 3 35 pm seen or 5(am) or 10 35(an	
	1 h o	0.8 /mi or 10) (hrs) 52 (mins) to 10 (hrs) 54	M1 A1	Implied by conshown	rrect final ans 2hrs	52 mins if not
	1 n o c	3 h nins or 13	8.75 – their decimal time and a ect conversion to hrs and mins or	M1		I1 nins – 11 hrs 29 n 9 then 2hrs 51 mir	
			52 mins cao	A1	www4 (2 hrs	51.75 mins)	

www.dynamicpapers.com

Page 5	Page 5 Mark Scheme: Teachers' version		Paper
	IGCSE – October/November 2010	0580	42

r	[1
7	(a) -3, -4.25, -3	1, 1, 1	Allow – 4.2 or – 4.3 for – 4.25
	(b) 10 correct points plotted	P3ft	P2ft for 8 or 9 correct P1ft for 6 or 7 correct
	Smooth curve through their 10 points and correct shape	C1	Correct shape not ruled, (curves could be joined)
	Two separate branches	B1ft	Indep but needs two 'curves' on either side of <i>y</i> -axis
	(c) (i) 0.7 to 0.85 (ii) Any value of k such that $k \le -3$ and must be consistent with their graph	1 1ft	-1 each extra ft consistent with their graph (If curves are joined then $k = -3$ only)
	(d) $y = 5x$ drawn - 0.6 to -0.75, 0.55 to 0.65	L1 1, 1	Ruled and long enough to meet curves Indep –1 each extra
	(e) Tangent drawn at $x = -2$	T1	Must be a reasonable tangent, not chord, no clear daylight
	<i>y</i> change / <i>x</i> change attempt	M1	Depend on T and uses scales correctly. Mark intention – allow one slight slip e.g. sign error from coords but not scale misread If no working shown and answer is out of range – check their tangent for method
	2.7 to 4.3	A1	Answer in range gets 2 marks after T1 earned
8	(a) (i) Correct translation to (3, -5), (5, -6) and (4, -4)	2	SC1 for translation of $\begin{pmatrix} 3 \\ k \end{pmatrix}$ or $\begin{pmatrix} k \\ -7 \end{pmatrix}$ or vertices only
	(ii) Correct reflection to (4, 1), (5, 3) and (6, 2)	2	SC1 for reflection in $y = 3$ or vertices only
	(iii) Correct rotation to (-2, 0), (-1, 2) and (-3, 1)	2	SC1 for rotation 90 clockwise around (0, 0) or vertices only
	(iv) Correct enlargement to (0, -3), (-8, 1) and (-4, -7)	2	SC1 for two correct points or vertices only
	(b) 16 cao	1	
	(c) (i) Correct transformation to $(-4, 0), (5, 3)$ and $(-2, 0)$	3	B2 for 3 correct points shown in working but not plotted or B1 for incorrect shear drawn with <i>x</i> -axis inversiont or two correct points shown
	(ii) Shear only	1	invariant or two correct points shown If more than one transformation given – no marks available
	<i>x</i> -axis oe invariant (factor) 3	1 1	Accept fixed, constant oe for invariant
	(iii) $\begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$ oe	2	B1 for determinant = 1 or $k \begin{pmatrix} 1 & -3 \\ 0 & 1 \end{pmatrix}$ oe

www.dynamicpapers.com

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	IGCSE – October/November 2010	0580	42

		r	г
9	(a) $\frac{4}{11}$ and $\frac{4}{10}$, $\frac{7}{10}$ $\frac{3}{10}$	1	Accept fraction, %, dec equivalents (3sf or better) throughout but not ratio or words i.s.w. incorrect cancelling/conversion to other forms Pen –1 once for 2 sf answers
	(b) (i) $\frac{7}{11} \times \frac{6}{10}$	M1	
	$\frac{42}{110} \text{ oe } \left(\frac{21}{55}\right)$	A1	www2 0.382 (0.3818)
	(ii) $\frac{7}{11} \times \frac{4}{10} + \frac{4}{11} \times \frac{7}{10}$	M2	ft their tree M1 for either pair seen
	$\frac{56}{110} \text{ oe } \left(\frac{28}{55}\right)$	A1	www3 0.509(0)
	(c) (i) $\frac{7}{11} \times \frac{6}{10} \times \frac{5}{9}$ or their (b)(i) $\times \frac{5}{9}$	M1	
	$\frac{210}{990} \text{ oe } \left(\frac{7}{33}\right)$	A1	www2 0.212(1)
	(ii) $1 - \left(\frac{4}{11} \times \frac{3}{10} \times \frac{2}{9}\right)$ oe	M2	Longer methods must be complete M1 for 4/11, 3/10 and 2/9 seen
	$\frac{966}{990}$ oe $\left(\frac{161}{165}\right)$	A1	www3 0.976 (0.9757)
10	(a) 21 and 34	1	
	(b) −5 8	1 + 1	
	(c) (i) 4,6	3	M1 for $2 + d = e$ oe or $d + e = 10$ oe seen and either M1 for a correct eqn in d or e seen e.g. $2e = 12$ oe or $2d = 8$ oe
	(ii) $x = 28$ y = -5 z = 23	5	or B1 for either correct B4 for any two correct or M3 for any of $18 = 3x - 66$ oe or $3y + 33 = 18$ oe or $33 - 3z = -36$ oe
			or M1 for 2 of $y = x - 33$ oe or $y + z = 18$ oe or $x + y = z$ oe and M1 for combining two of the previous equations correctly isw (does not have to be simplified)
			after 0 scored SC1 for -33 + their x = their y or their x + their y = their z or their y + their z = 18