UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2008 question paper

0580 and 0581 MATHEMATICS

0580/04 and 0581/04 Paper 04 (Extended), maximum raw mark 130

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2008	0580/0581	04

Abbreviations

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working

Page 3	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2008	0580/0581	04

1 (a) (i)	(\$) 6 000 cao	B2	M1 for $0.1 \times 10\ 000 + 0.25 \times 20\ 000$ oe
(ii)	15 (%) cao	B2	M1 for $\frac{their(a)(i)}{40000} \times 100$
(b)	(\$) 11 200 ft	B1 ft	ft 17200 – their (a)(i)
(c) (i)	(\$) 7500 cao	B2	M1 for $\frac{12000}{5+3} \times 5$ oe After M0, SC1 for 4500
(ii)	9/80 cao	B1	Ignore decimals or %'s seen Mark final fraction
(d)	(\$) 8640 cao	B2	M1 for 10 800 ÷ 1.25 oe [10]

2 () ()	1 (+ 4) (2 40	3.71	T
2 (a) (i)	x(x+4) / 2 = 48 oe	M1	Eqn must include 48
	$x^2 + 4x - 96 = 0$	E1	Dep on M1 + shows one intermediate algebraic step with no errors seen
(ii)	- 12 or 8	B1B1	Allow deletion of negative root
(iii)	12 (cm) correct or ft	B1ft	Accept 12 or ft their positive root in part (ii) (if only one) + 4.
(b)	$\frac{4}{5}$ oe	B2	M1 for $\frac{x}{x+4} = \frac{1}{6}$ oe
(c) (i)	$(x + 4)^2 + x^2 = 9^2$ oe or $x^2 + 8x + 16 + x^2 = 81$ $2x^2 + 8x - 65 = 0$	M1 E1	Accept 2^{nd} line for M1 or $2x^2 + 8x + 16 = 81$ Dep on M1 with no errors, expanded brackets step needed
(ii)	$\frac{p + (-)\sqrt{q}}{r} \text{ where } p = -8 \text{ and } r = 2 \times 2$ $r \text{ and } q = 8^2 - 4(2)(-65) \text{ oe}$ (584)	M1 M1	Allow second mark if in form $p \pm \frac{\sqrt{q}}{r}$
	- 8.04, 4.04 cao www	A1A1	SC2 if correct solutions but no working shown or SC1 for -8.041522987 and 4.041522987 rounded or truncated
(iii)	21.08 or 21.1 (cm) strict ft	B1ft dep	ft 4.04 in part (ii) or 2 × a positive root + 13

Page 4	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2008	0580/0581	04

3	(a)	5.(04), 0(.0), 8.7 or 8.66(6) or better	В3	1 each
		seen		
	(b)	Correct axes for domain and range	S1	
		10 correct points, on correct grid line or	P3ft	P2ft for 8 or 9 correct
		within correct 2mm square vertically		P1ft for 6 or 7 correct
		Reasonable curve through 10 points	C1ft	Correct shape, not ruled, within 1 mm of points
		condone curvature around $x = -0.2$ and 0.2		(curves could be joined)
		Two separate branches	B1ft	Independent but needs two 'curves' on either
		The state of the s		side of y-axis
	(c) (i)	y = -3x ruled correctly	L1	Check at $(-1, 3)$ to $(1, -3)$ within 1 mm (can be
	(•) (-)	y en raisea correcting		shorter)
		-2.95 to -2.6 , -0.75 to -0.6 , 0.5 to 0.6	B2	B1 for 2 correct.
		2.55 to 2.0, 0.75 to 0.0, 0.5 to 0.0	22	isw y – values
				No penalty for each extra value if curve is cut
				more than 3 times
				more than 5 times
	(ii)	(r-)2 $(k-)1$	D1D1	After 0,0 SC1 for $x^3 + 3x^2 - 1 = 0$
	(11)	(a =) 3 (b =) -1	B1B1	After 0,0 SC1 for $x + 5x - 1 = 0$
	(A)	T	TP1	Must be a geographic top cout allow all als
	(d)	Tangent to their curve ruled at $x = -2$	T1	Must be a reasonable tangent allow slight
		. ,	3.54	daylight <1mm
		rise/run using correct scales	M1	Dep on T1 (implied by answer 3 to 4.5)
		4.5.		Must show working if answer out of range
		−4.5 to −3	A1	
				[17]

4 (a)		72	B1	
(b)	(i)	$0.5 \times 15 \times 15 \sin (their 72)$ oe 106.9 to 107 (cm ²) cso	M1 A1	not for 90° www2
	(ii)	534.5 to 535 (cm ²) ft	B1 ft	ft their (i) × 5
	(iii)	$\pi \times 15^2 \times 50$ their (ii) × 50 Vol of cylinder – prism 8590 - 8625 (cm ³) cao	M1 M1 M1 A1	(707 or 35350) or $\pi \times 15^2$ (26750) or $\pi \times 15^2$ their (b) (ii) Dep on M2 then \times 50 www4
(c)		$(AB =) 15\sin(their36) \times 2$ oe (17.63) (not 30° or 45°)	M1	or $\sqrt{15^2 + 15^2 - 2 \times 15 \times 15 \times \cos(their72)}$ Not for 90° or 60° or sine rule
		Area of one rectangle = their $AB \times 50$ 5 (50 × a length) + 2 × their (b)(ii) 5470 - 5480 (cm ²) cao	M1 M1 A1	dep on $1^{st}\mathbf{M}$ (881.5) not 15×50 Indep (4407.5 + 1070) www4

Page 5	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2008	0580/0581	04

5	(a)	(60 + 40)/35	M1	(2.857) could be in parts
		Correct method to convert a decimal time	M1	ft a decimal
		to minutes		either full answer or decimal part × 60
				(e.g. 51.(428), 171.(4)or 2hrs 51 or 51 m)
		14 46 or 2 46 pm cao	A1	www3
	(b) (i)	260	B 1	
	(ii)	145	B1ft	ft <i>their</i> (b) (i) – 115
	(c)	$(AC^2 =)40^2 + 60^2 - 2 \times 40 \times 60 \times \cos 115$	M2	M1 for correct implicit version
		(AC=) $$ of a correct combination	M1	dependent (7229)
		85(.0 km) cao	A1	www4
	(d)	$\frac{\sin A}{\sin A} = \frac{\sin 115}{\cos A}$ oe	M1	Implicit equation
		$\frac{-}{60} = \frac{-}{their(c)}$ oe		Could use cosine rule M1 for implicit
		oo men (e)		and M1 for explicit form
		sin 115	3.71	D MI D III
		$(\sin A =) \frac{\sin 115}{their(c)} \times 60$	M1	Dep on M1 Explicit equation
		` *	A1	www3
		39.76 to 39.8 cao	AI	www3
	(e)	40sin80 + 60sin35 oe	M2	their (c) $\times \sin(100 - their$ (d))
	, ,	(39.4) (34.4)		or their (c) \times cos (their (d) -10)
				M1 for either 40sin80 or 60sin35
				or implicit trig version using their (c)
		73.76 – 73.81 (km) cao	A1	www3
				[15]

		20	7.1	
6	(a) (i)	30	B1	
	(ii)	30, 30.5, 31	B1 B1	Penalty 1 for each extra value
	()	, ,	B 1	Ignore repeated values
			Di	ignore repeated varies
-	2000			
	(iii)	$\frac{10 \times 30 + 7 \times 31 + x \times 32}{10 \times 30 \times 30 \times 30} = 30.65$	M1	
		$\frac{10+7+x}{10+7+x}$	IVII	
		10 . ,		
		correct clearance of fraction	M 1	Dep on M1
				e.g. $517 + 32x = 521.05 + 30.65x$ oe
		3 cao	A1	www3
			111	W W W 3
	(b) (i)	$35 \times 15 + 115 \times 21 + 26 \times 23 + 24 \times 27$	M3	(4186/200) M1 for use of 15, 21, 23, 27 (allow
	. , . ,			one error)
		200		· · · · · · · · · · · · · · · · · · ·
				and M1 for use of $\sum fx$ with value of x in
				correct range used (allow one further error)
				_ ·
				and M1 dep on 2^{nd} M for dividing by $\sum f$ or
				200
			A1	
		20.93 or 20.9 cao	AI	www4 Accept 21 after M3 earned
1	(2:)	26	D1	
	(ii)	2.6 cao	B 1	
		0.7 1.0.0	D4	D2 C
		0.7 and 0.8	B4	B3 for one correct
				or B2 for 3.5 and 4 seen
				or B1 for 4 seen
				[16]
				[10]

Page 6	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2008	0580/0581	04

7 (a) (i)	Translation only $\begin{pmatrix} 0 \\ 11 \end{pmatrix}$ oe	B1 B1	Throughout parts (i) to (v) if more than one transformation is given then no marks at all for that part Accept T
(ii)	Reflection only $x = 1$ oe only	B1 B1	Accept M
(iii)	Reflection only $y = -x$ oe only	B1 B1	Accept M
(iv)	Enlargement only (centre)(2, 0), only (scale factor) 0.5 oe only	B1 B1 B1	Accept E
(v)	Stretch only (factor) 2, only <i>x</i> -axis oe invariant cao only	B1 B1 B1	Accept S Ignore parallel to y-axis
(b) (i)	$\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$	B2	B1 each column
(ii)	$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$	B2	B1 for right hand column [16]

8 (a)	<i>x</i> = 78	B 1	
, ,	alternate angles	R1	Dep on B1 Accept Z <u>angle</u> , extras can spoil Accept longer reasons using correct language and clarity with angles used. e.g. allied angles gives 102° and angles on a
			straight line = 180°
	either $y = 144$ or $z = 102$ (opposite angles of) cyclic quad (= 180)	B1 R1	Dep on B1 , extras can spoil
	and $z = 102$ or $y = 144$ Angles (in (a)) quadrilateral (= 360) or (opp angles of) cyclic quad (= 180)	B1 R1	Dep on B1 extras can spoil
(b)	Their $z + 36 \neq 180$ oe	R1	Could also use their angles x and y provided $x + y \neq 180$. Could be a longer reason involving angles must be clearly explained.
(c)	72 or 288	B1	
(d)	51 cao	B1	[9]

Page 7	Mark Scheme	Syllabus	Paper
	IGCSE – October/November 2008	0580/0581	04

9 (a)	(p =) 5 cao,	B1	Accept in correct order if no labels
	(q =) 12 cao (r =) 1 ft	B1 B1ft	ft for $r = 18 - their p - their q$ provided r not
	(r –) 1 II	DIII	negative $r - 18 - metr p - metr q$ provided r not negative
(b) (i)	17 cao	B1	
(ii)	12 cao	B1	
(c) (i)	26 cao	B1	
(ii)	57 ft	B1ft	ft $45 + their q$
(d) (i)	8 .	B1	
	$\frac{3}{100}$ oe isw		
(ii)	45 .	B1	
	$\frac{43}{100}$ oe isw		
(e)	Any fraction with denominator 74 seen	B1	
	$\frac{37}{74} \times \frac{36}{73}$	M1	ft <i>their</i> fraction i.e. one taken off each part
	74 73		$\frac{k}{l} \times \frac{k-1}{l-1}$ N.B $\frac{1}{2} \times \frac{36}{73}$ gets B1M1
	18		1332
	$\frac{18}{73}$ oe isw cao	A1	$\frac{1332}{5402}$ www3 (if decimal then 0.247 or better)
			Do not accept ratio or in words
			[12]
10 (a) (i)	8×(8+1)	F.4	
	$\frac{8\times(8+1)}{2} = 36$	E 1	
	$1+2+3+\ldots+8=36$	E1	
(ii)	80 200	B1	
(b) (i)	2(1+2+3++n)=		
	$2 \times \frac{n(n+1)}{2} = n (n+1)$	7.4	
	$\frac{2}{2}$ $\frac{n(n+1)}{2}$	E1	both steps must be shown
(ii)	40 200	B1	
(iii)	40 000	B1ft	ft their (a)(ii) – their(b)(ii)
			or <i>their</i> (b)(ii) – 200 ft
			Not for zero or negative answer
(c) (i)	$\frac{2n(2n+1)}{2n(2n+1)}$ of final answer	B1	e.g. $2n^2 + n$
	$\frac{2n(2n+1)}{2}$ oe final answer		
(ii)	n^2 cao	B2	M1 for <i>their</i> (c)(i) – $n(n + 1)$
(11)			or $n(n+1)-n$
			or $n/2(2+2(n-1))$ [9]