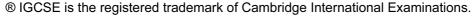
CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the May/June 2015 series

0580 MATHEMATICS


0580/21 Paper 2 (Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

	· · · · · · · · · · · · · · · · · · ·	· · · · · · · a y mannopa	0010.00111
Page 2	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	21

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

Question.	Answer	Mark	Part Marks
1	9.5	1	
2	7.37 or 7.371	1	
3	2.7×10^5	1	
4	$2x^2 + 8x - 35$ final answer	2	B1 for 2 correct terms in final answer or M1 for $2x^2 + 3x$ or $5x - 35$
5	Sammy and correct reason with 25.7% oe shown	2	B1 for 25.7% or 0.257 seen or conversion of 26% to fraction and common denominator
6	44	2	B1 for 75.5 or 119.5 seen
7	$24u^2w^3$ final answer	2	B1 for 2 correct elements in final answer
8	13.6 or 13.60	3	M2 for $\sqrt{(-4-7)^2 + (6-(-2))^2}$ oe or M1 for $(-4-7)$ oe or $(6-(-2))$ oe
9	$\frac{9}{5}$	B1	or $\frac{63}{35}$
	their $\frac{9}{5} \times \frac{7}{3}$ or $\frac{9 \times 7}{5 \times 3}$	M1	or <i>their</i> $\frac{63}{35} \div \frac{15}{35}$ or equivalent division with fractions with common denominators
	$\frac{21}{5}$ or $4\frac{1}{5}$ cao	A1	nactions with common denominators
10	2520	3	M2 for $12 \times (1+6) \div 2$ oe or M1 for 1 area correct
			If zero scored B1 for top speed = 720 m per min or total time = 360 sec

Page 3	Mark Scheme		Paper
	Cambridge IGCSE – May/June 2015	0580	21

Qu	estion.	Answer	Mark	Part Marks
11	(a)	4 <i>n</i> oe final answer	1	
	(b)	$3n^2 + 8$ oe final answer	2	M1 for a quadratic expression as final answer or $3n^2 + 8$ oe in working
12		18	3	M2 for $2(2+4)^2 = p(-2+4)^2$ oe
				$\mathbf{M1} \text{ for } p = \frac{k}{(q+4)^2}$
				A1 for $k = 72$
13		72	3	M2 for $\frac{1280}{64} \times \frac{60 \times 60}{1000}$
				M1 for working out distance ÷ speed
				e.g. figs $1280 \div 64$ or figs $\frac{1280}{their speed}$
				or for working out km/h to m/s conversion
				e.g. $64 \times \frac{1000}{60 \times 60}$ oe
				or their $\left(\frac{1280}{64}\right) \times \frac{60 \times 60}{1000}$ oe
14	(a)	a + 2b - a or $a - (a - 2b)$ oe	1	
	(b)	Parallelogram	1	
		PM equal and parallel to QR	1	SC1 for answer trapezium with reason PM
		or		parallel to QR
		PM or PS parallel to $QRand MR found = a so 2 pairs ofparallel sides$		
15		y < 8	1	
		$y \ge 6 - x$ oe and $y \ge x + 2$ oe	3	B2 for either $y \ge 6 - x$ oe or $y \ge x + 2$ oe or SC2 for $y = 6 - x$ oe and $y = x + 2$ oe or SC1 for $y \ge 6 - x$ or $y = 6 - x$ or $y \ge x + 2$ or $y = x + 2$

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	21

Question.	Answer	Mark	Part Marks
16	1597 cao	4	B3 for 1597.39 or 1597.3[9] or 1597.4 or 6597 or B2 for 6597.3[9] or 6597.4 or B1 for $5000\left(1+\frac{2}{100}\right)^{14}$ If B1 scored or B0 scored and an attempt at compound interest is shown SC1 for <i>their</i> 6597[] – 5000 evaluated correctly provided answer positive and SC1 for <i>their</i> final answer rounded correctly to nearest \$ from their more accurate answer
17 (a)	2×3×5	2	B1 for 2, 3, 5 as prime factors
(b)	90	2	B1 for $90k$ or for listing multiples of each up to 90 or $2 \times 3^2 \times 5$
18	Correctly equating one set of coefficients	M1	
	Correct method to eliminate one variable	M1	Dependent on the coefficients being the same for one of the variables Correct consistent use of addition or subtraction using their equations
	x = 0.8	A1	If zero scored SC1 for
	y = -3	A1	2 values satisfying one of the original equations or
			if no working shown, but 2 correct answers given
19 (a)	7.5	2	M1 for $[10] \times \frac{6}{8}$ oe
(b)	12 cao	2	M1 for $9 \times \frac{8}{6}$ oe or $9 \times \frac{10}{their (a)}$
20 (a)	(p+t)(y+2x) final answer	2	B1 for $y(p+t)+2x(p+t)$ or $p(y+2x)+t(y+2x)$
(b)	7(h+k)(h+k-3) final answer	2	B1 for $7((h+k)^2 - 3(h+k))$ or $(h+k)(7(h+k)-21)$

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – May/June 2015	0580	21

Question.	Answer	Mark	Part Marks
21	285 cao	4	M1 for $\frac{1}{3} \times \pi \times 4^2 \times 9$, 48π
			M1 for $\frac{1}{2} \times \frac{4}{3} \times \pi \times 4^3$, $\frac{128\pi}{3}$
			A1 for 284.8 to 284.9, $\frac{272\pi}{3}$
			If A0 then B1 for <i>their</i> final answer rounded correctly to nearest whole number from their more accurate answer dependent on at least M1
22 (a)	$ \begin{pmatrix} 22 & 17 \\ 18 & 7 \end{pmatrix} $	2	M1 for a 2×2 matrix with 2 correct elements
(b)	$\begin{bmatrix} \frac{1}{2} \begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix} \end{bmatrix}$	2	M1 for $\frac{1}{2} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ or $k \begin{pmatrix} 4 & -3 \\ -6 & 5 \end{pmatrix}$ soi
			or det = 2 soi
23 (a)	-13	1	
(b)	-3x - 1 or $5 - 3(x + 2)$	1	
(c)	9x - 10 cao	2	M1 for $5 - 3(5 - 3x)$
(d)	$\frac{5-x}{3}$ final answer oe	2	M1 for correct first step e.g.
			$y+3x = 5$ or $\frac{y}{3} = \frac{5}{3} - x$ or $y-5 = -3x$ or
			better
			or
			for interchanging x and y, e.g. $x = 5 - 3y$, this does not need to be the first step