CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge International General Certificate of Secondary Education

MARK SCHEME for the March 2015 series

0580 MATHEMATICS

0580/22

Paper 2 (Paper 22 – Extended), maximum raw mark 70

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the March 2015 series for most Cambridge IGCSE® components.

www.dynamicpapers.com

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	22

Abbreviations

cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

nfww not from wrong working

soi seen or implied

	Qu.	Answers	Mark	Part Marks
1		Negative	1	
2		96	2	B1 for $96k$ or $2^5 \times 3$ or for listing multiples of each up to 96
3		572.4	2	M1 for figs $(120 \times 90 \times 53)$
4		7p(2p+3q)	2	B1 for $7(2p^2 + 3pq)$ or $p(14p + 21q)$
5		18 - 5n oe	2	M1 for $5n$ or $-5n$
6	(a)	Correct arc centre <i>B</i> , radius 5.7	1	
	(b)	Shading below <i>CN</i> outside arc	1FT	FT shading below <i>CN</i> outside their arc centre <i>B</i>
7		37	2	M1 for 180 – 90 – 53 oe or B1 for 53 or the right angle, either marked in correct place on diagram
8	(a)	68	1	
	(b)	15	2	M1 for $\frac{360}{n} = 24$ or $(n-2)180 = 156n$
9		400 350 250	3	M1 for $\frac{1000}{8+7+5}$ implied by 50 A1 for one clearly assigned correct answer
				or SC2 for 3 correct answers in wrong order
10	(a)	x + x + 4 + x + 4 = 26 oe	1	
	(b)	6[.00] cao	2	M1 for their linear eqn simplified to $ax = b$

www.dynamicpapers.com

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	22

11	Correctly eliminating one variable $[x =] 6$ $[y =] \frac{1}{4}$	M1 A1	160 1661 6 21
	4		If 0 scored SC1 for 2 values satisfying one of the original equations SC1 if no working shown but correct answers given
12	44 300 cao	3	M1 for $50000 \times (0.97)^4$ oe and B1 for 44260 or better
			or SC1 for correct method for 3% increase with final answer of 56300
13	12	3	M1 for $x = k \sqrt[3]{y}$ oe A1 for $k = 3$ or M2 for $\frac{6}{\sqrt[3]{8}} = \frac{x}{\sqrt[3]{64}}$ oe
14	3y + x = 19 oe	3	M1 for their $m \times 3 = -1$ oe or $-\frac{1}{3}$ soi M1 for $4 = 7 \times their \ m + c$
15 (a)	$ \begin{pmatrix} 76 & 30 \\ 40 & 16 \end{pmatrix} $	2	B1 for two correct elements
(b)	$\begin{bmatrix} \frac{1}{4} \begin{pmatrix} 2 & -3 \\ -4 & 8 \end{pmatrix} \text{ oe }$	2	B1 for $k \begin{pmatrix} 2 & -3 \\ -4 & 8 \end{pmatrix}$ soi or $\frac{1}{4} \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ seen or det = 4 soi
16	$\frac{25}{9}$	B1	(Alt) $\frac{25}{9}$
	$\frac{a}{b} \times \frac{6}{5}$ where $a > b$	M1	$\frac{their25 \times 2}{9 \times 2} \div \frac{5 \times 3}{6 \times 3} \text{ oe}$
	Their $\frac{150}{45}$ or their correct full cancelling	M1FT dep	$\frac{their25 \times 2}{5 \times 3}$ oe or $\frac{50}{18} \div \frac{15}{18}$ oe with 18's cancelled
	$\frac{10}{3}$ or $3\frac{1}{3}$ nfww	A1	

www.dynamicpapers.com

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge IGCSE – March 2015	0580	22

17	(a)	b – a	2	M1 if unsimplified or correct route in terms
				of <i>P</i> , <i>Q</i> , <i>R</i> , <i>S</i>
	(b)	$\frac{5}{8}\mathbf{x} + \frac{3}{8}\mathbf{y}$	2	M1 for a correct route e.g. $OX + XM$
				for $\frac{3}{8}\overrightarrow{XY}$ or $\frac{5}{8}\overrightarrow{YX}$
				8 8
18		14.4 or 14.36	4	M3 for tan = $\frac{6}{their\sqrt{15^2 + 18^2}}$ oe or better
				or M1 for $AC = \sqrt{15^2 + 18^2}$ and M1 for identifying required angle
19		95	4	B1 for 2.3 or $2\frac{18}{60}$
				M1 for $75 \div 30 (= 2.5)$
				M1 for $\frac{381 + 75}{their 2.3 + their 2.5}$
20	(a)	35	2	M1 for $[Z =] 180 - 88 - 57$ or $VWX = 57$ or $YZX = 35$
	(b)	10.8	2	M1 for $\frac{AC}{7.2} = \frac{12.6}{8.4}$ oe
21	(a) (i)	1	1	
	(ii)	m^7	1	
	(iii)	$2p^2$	2	SC1 for $2p^k$ or kp^2 $k \neq 0$
	(b)	$\frac{2}{5}$ or 0.4	2	B1 for 3^5 or 3^{5x} or $243^{\frac{1}{5}}$ or $243^{\frac{2}{5}}$ seen
22	(a)	17	2	M1 for $[g(-2)] = 3$ seen or for $5x^2 - 3$
	(b)	$25x^2 - 30x + 9$ or $(5x - 3)^2$ as final answer	2	M1 for $g(5x-3)$
	(c)	$\frac{x+3}{5}$	2	M1 for $5x = y + 3$ or $x = 5y - 3$ or
		5		$\frac{y}{5} = x - \frac{3}{5}$